Доказательство теорем в нечеткой логике на основе структурной резолюции
Рассмотрен подход к доказательству теорем с нечеткой и не вполне истинной аргументаяцией. В качестве правила доказательного рассуждения используется композиционное правило вывода Л. Заде, а его процедурная реализация осуществляется механизмом опровержения. В качестве такого механизма предложена стру...
Saved in:
| Date: | 2019 |
|---|---|
| Main Author: | |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2019
|
| Series: | Кибернетика и системный анализ |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/180847 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Доказательство теорем в нечеткой логике на основе структурной резолюции / Ю.Я. Самохвалов // Кибернетика и системный анализ. — 2019. — Т. 55, № 2. — С. 44-58. — Бібліогр.: 22 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-180847 |
|---|---|
| record_format |
dspace |
| fulltext |
|
| spelling |
nasplib_isofts_kiev_ua-123456789-1808472025-02-09T11:25:43Z Доказательство теорем в нечеткой логике на основе структурной резолюции Доведення теорем у нечіткій логіці на основі структурної резолюції Proof of theorems in fuzzy logic on the basis of structural resolution Самохвалов, Ю.Я. Кібернетика Рассмотрен подход к доказательству теорем с нечеткой и не вполне истинной аргументаяцией. В качестве правила доказательного рассуждения используется композиционное правило вывода Л. Заде, а его процедурная реализация осуществляется механизмом опровержения. В качестве такого механизма предложена структурная резолюция (S -резолюция), которая является обобщением принципа резолюций на нечеткие утверждения. S -резолюция основана на семантических индексах литер и их сходстве. Семантические индексы являются существенным моментом S -резолюции. Они содержат информацию, которая используется в качестве управляющей в процессе вывода. А сходство заключается в поиске литер для получения S -резольвенты. Комплексирование композиционного правила вывода Л. Заде и S -резолюции позволяет, с одной стороны, снять проблему корректности резольвент в нечеткой логике, а с другой — обеспечить регулярность процесса доказательства как в двузначной, так и в нечеткой логике. Ключевые слова: автоматическое доказательство теорем, нечеткая теорема, принцип резолюций, нечеткая логика, приближенные рассуждения, обобщенное правило modus ponens, композиционное правило, нечеткие предикаты, нечеткие и лингвистические переменные. Розглянуто підхід до доведення теорем у нечіткій логіці і не цілком істинною аргументацією. Як правило доказового міркування використовують композиційне правило виведення Л. Заде, а його процедурна реалізація здійснюється механізмом спростування. Структурна резолюція (S -резолюція), яка є узагальненням принципу резолюцій на нечіткі твердження, запропонована як такий механізм. S -резолюція базується на семантичних індексах літер і їхній схожості. Семантичні індекси є істотним моментом S -резолюції. Вони містять інформацію, яка використовується як керівна у процесі виводу, а схожість полягає у пошуку літер для отримання S -резольвенти. Комплексування композиційного правила виводу Л. Заде і S -резолюції дозволяє, з одного боку, зняти проблему коректності резольвент в нечіткій логіці, а з іншого — забезпечити регулярність процесу доведення як в двозначній, так і в нечіткій логіці. The author considers the approach to proof of theorems with fuzzy and not quite true argumentation. In this approach, the Zadeh composition rule of correctness is used as a rule of evidence, and its procedural implementation is carried out by refutation mechanism. As such a mechanism, a structural resolution (S -resolution) is proposed, which is a generalization of the principle of resolutions to fuzzy statements. S -resolution is based on semantic indices of letters and their similarity. Semantic indices are a key point of S-resolution. They contain information that is used as a control for the derivation process. And similarity implies finding letters to get S-resolvent. Combining the Zadeh compositional derivation rule and S-resolution allows, on the one hand, solving the problem of correctness of resolvents in fuzzy logic, and on the other hand, ensuring the regularity of the proof process in both two-valued and fuzzy logic. 2019 Article Доказательство теорем в нечеткой логике на основе структурной резолюции / Ю.Я. Самохвалов // Кибернетика и системный анализ. — 2019. — Т. 55, № 2. — С. 44-58. — Бібліогр.: 22 назв. — рос. 1019-5262 https://nasplib.isofts.kiev.ua/handle/123456789/180847 681.61 ru Кибернетика и системный анализ application/pdf Інститут кібернетики ім. В.М. Глушкова НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
Russian |
| topic |
Кібернетика Кібернетика |
| spellingShingle |
Кібернетика Кібернетика Самохвалов, Ю.Я. Доказательство теорем в нечеткой логике на основе структурной резолюции Кибернетика и системный анализ |
| description |
Рассмотрен подход к доказательству теорем с нечеткой и не вполне истинной аргументаяцией. В качестве правила доказательного рассуждения используется композиционное правило вывода Л. Заде, а его процедурная реализация осуществляется механизмом опровержения. В качестве такого механизма предложена структурная резолюция (S -резолюция), которая является обобщением принципа резолюций на нечеткие утверждения. S -резолюция основана на семантических индексах литер и их сходстве. Семантические индексы являются существенным моментом S -резолюции. Они содержат информацию, которая используется в качестве управляющей в процессе вывода. А сходство заключается в поиске литер для получения S -резольвенты. Комплексирование композиционного правила вывода Л. Заде и S -резолюции позволяет, с одной стороны, снять проблему корректности резольвент в нечеткой логике, а с другой — обеспечить регулярность процесса доказательства как в двузначной, так и в нечеткой логике. Ключевые слова: автоматическое доказательство теорем, нечеткая теорема, принцип резолюций, нечеткая логика, приближенные рассуждения, обобщенное правило modus ponens, композиционное правило, нечеткие предикаты, нечеткие и лингвистические переменные. |
| format |
Article |
| author |
Самохвалов, Ю.Я. |
| author_facet |
Самохвалов, Ю.Я. |
| author_sort |
Самохвалов, Ю.Я. |
| title |
Доказательство теорем в нечеткой логике на основе структурной резолюции |
| title_short |
Доказательство теорем в нечеткой логике на основе структурной резолюции |
| title_full |
Доказательство теорем в нечеткой логике на основе структурной резолюции |
| title_fullStr |
Доказательство теорем в нечеткой логике на основе структурной резолюции |
| title_full_unstemmed |
Доказательство теорем в нечеткой логике на основе структурной резолюции |
| title_sort |
доказательство теорем в нечеткой логике на основе структурной резолюции |
| publisher |
Інститут кібернетики ім. В.М. Глушкова НАН України |
| publishDate |
2019 |
| topic_facet |
Кібернетика |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/180847 |
| citation_txt |
Доказательство теорем в нечеткой логике на основе структурной резолюции / Ю.Я. Самохвалов // Кибернетика и системный анализ. — 2019. — Т. 55, № 2. — С. 44-58. — Бібліогр.: 22 назв. — рос. |
| series |
Кибернетика и системный анализ |
| work_keys_str_mv |
AT samohvalovûâ dokazatelʹstvoteoremvnečetkojlogikenaosnovestrukturnojrezolûcii AT samohvalovûâ dovedennâteoremunečítkíjlogícínaosnovístrukturnoírezolûcíí AT samohvalovûâ proofoftheoremsinfuzzylogiconthebasisofstructuralresolution |
| first_indexed |
2025-11-25T21:29:36Z |
| last_indexed |
2025-11-25T21:29:36Z |
| _version_ |
1849799398135955456 |