Алгоритм наилучшей равномерной аппроксимации сплайнами со свободными узлами

Предложен алгоритм наилучшего равномерного приближения сплайном с оптимальными узлами. Для поиска оптимальных узлов использована дифференциальная эволюция один из лучших эволюционных алгоритмов, стабильно находящий глобальный оптимум функции за минимальное время. Коэффициенты сплайна определены как...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Кибернетика и системный анализ
Дата:2019
Автори: Вакал, Л.П., Вакал, Е.С.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2019
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/180875
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Алгоритм наилучшей равномерной аппроксимации сплайнами со свободными узлами / Л.П. Вакал, Е.С. Вакал // Кибернетика и системный анализ. — 2019. — Т. 56, № 3. — С. 121-128. — Бібліогр.: 22 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Предложен алгоритм наилучшего равномерного приближения сплайном с оптимальными узлами. Для поиска оптимальных узлов использована дифференциальная эволюция один из лучших эволюционных алгоритмов, стабильно находящий глобальный оптимум функции за минимальное время. Коэффициенты сплайна определены как решение задачи сплайн-аппроксимации с фиксированными узлами. Приведены результаты вычислительного эксперимента. Запропоновано алгоритм найкращого рівномірного наближення сплайном з оптимальними вузлами. Для пошуку оптимальних вузлів застосовано диференціальну еволюцію один з найкращих еволюційних алгоритмів, що стабільно знаходить оптимум функції за мінімальний час. Коефіцієнти сплайна визначено як розв’язання задачі сплайн-апроксимації з фіксованими вузлами. Наведено результати обчислювального експерименту. An algorithm for best uniform spline approximation with free knots is presented in this paper. A differential evolution is used for finding the optimal knots. It is one of the best evolutionary algorithms which finds function’s global optimum in minimum time. Spline coefficients are computed as a solution of a spline-approximation problem with fixed knots. Results of the numerical experiment are given
ISSN:1019-5262