Про методи класифікації прихованих концептів мови у спеціалізованих текстах із залученням псевдообернення, кластеризації і групування ознак

В роботі розглянуто задачу порівняння концептів мови у наукових текстах. Для обробки текстів сформовано корпус текстів, які перетворювалися за мірою TF-IDF у поєднанні з перетворенням Карунена – Лоева та T-стохастичним групуванням найближчих сусідів (T-SNE). Отримана структура класифікатора прихован...

Full description

Saved in:
Bibliographic Details
Published in:Кібернетика та комп’ютерні технології
Date:2021
Main Authors: Крак, Ю.В., Куляс, А.І., Петрович, В.М., Кузнєцов, В.О.
Format: Article
Language:Ukrainian
Published: Інститут кібернетики ім. В.М. Глушкова НАН України 2021
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/181000
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Про методи класифікації прихованих концептів мови у спеціалізованих текстах із залученням псевдообернення, кластеризації і групування ознак / Ю.В. Крак, А.І. Куляс, В.М. Петрович, В.О. Кузнєцов // Кібернетика та комп’ютерні технології: Зб. наук. пр. — 2021. — № 2. — С. 68-75. — Бібліогр.: 10 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:В роботі розглянуто задачу порівняння концептів мови у наукових текстах. Для обробки текстів сформовано корпус текстів, які перетворювалися за мірою TF-IDF у поєднанні з перетворенням Карунена – Лоева та T-стохастичним групуванням найближчих сусідів (T-SNE). Отримана структура класифікатора прихованих концептів у вибірці наукових текстів із використанням дерев рішень, досягнуто точність розпізнавання (97–99 %) на зразках текстових даних Досліджено стійкість до збурення вихідних даних варіаційним автокодувальником. Рассмотрена проблема анализа концептов в научных текстах на украинском языке с использованием методов интеллектуального анализа текста, уменьшение размерности данных и группирования признаков. This paper discusses the problems of analysis of hidden language concepts in scientific texts in the Ukrainian language, using methods of text mining, dimensionality reduction, grouping of features and linear classifiers.
ISSN:2707-4501