Эффективный метод исследования устойчивости существенно нелинейных динамических систем
Приведен простой и быстрый метод оценки асимптотической устойчивости существенно нелинейных динамических систем, в частности систем большой размерности, для которых ряды Тейлора разложения правых частей дифференциальных уравнений сходятся медленно и сумма членов выше второго порядка малости может зн...
Gespeichert in:
| Veröffentlicht in: | Кибернетика и системный анализ |
|---|---|
| Datum: | 2019 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2019
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/181006 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Эффективный метод исследования устойчивости существенно нелинейных динамических систем / Э.Р. Смольяков // Кибернетика и системный анализ. — 2019. — Т. 56, № 4. — С. 15-23. — Бібліогр.: 5 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-181006 |
|---|---|
| record_format |
dspace |
| spelling |
Смольяков, Э.Р. 2021-10-26T16:45:17Z 2021-10-26T16:45:17Z 2019 Эффективный метод исследования устойчивости существенно нелинейных динамических систем / Э.Р. Смольяков // Кибернетика и системный анализ. — 2019. — Т. 56, № 4. — С. 15-23. — Бібліогр.: 5 назв. — рос. 1019-5262 https://nasplib.isofts.kiev.ua/handle/123456789/181006 517.9 Приведен простой и быстрый метод оценки асимптотической устойчивости существенно нелинейных динамических систем, в частности систем большой размерности, для которых ряды Тейлора разложения правых частей дифференциальных уравнений сходятся медленно и сумма членов выше второго порядка малости может значительно превышать величину любого члена второго порядка. В таком случае метод функций Ляпунова не может гарантировать корректную оценку устойчивости. В основе предложенного метода процедура максимизации скорости изменения метрики пространства возмущенного состояния, которая только в частных случаях может оказаться одновременно и функцией Ляпунова. Описанная методика не рассчитана на оценку устойчивости линейных систем. Наведено простий і швидкий метод оцінювання асимптотичної стійкості істотно нелінійних динамічних систем, зокрема систем великої розмірності, для яких ряди Тейлора розвинення правих частин диференціальних рівнянь збігаються повільно і сума членів вище другого порядку малості може суттєво перевищувати величину будь-якого члена другого порядку. У такому випадку метод функцій Ляпунова не може гарантувати коректної оцінки стійкості. В основі запропонованого методу процедура максимізації швидкості зміни метрики простору збуреного стану, яка лише в окремих випадках може бути одночасно і функцією Ляпунова. Описана методика не розрахована на оцінювання стійкості лінійних систем. A simple and quick method is proposed for estimation of the asymptotic stability of highly nonlinear dynamic systems, in particular, of the high-dimensional systems for which Tailor series of the right-hand sides of the differential equations converge very slowly. In this case, the sum of terms of the order of smallness higher than two can substantially exceed the value of any term of second order. In this case, Lyapunov’s method cannot guarantee correct stability estimate. The new method is based on the procedure of maximization of the velocity of variation in metrics of the perturbed state space. This metrics can at the same time also be a Lyapunov function. The proposed new method is not intended for the stability estimate of linear systems. ru Інститут кібернетики ім. В.М. Глушкова НАН України Кибернетика и системный анализ Кібернетика Эффективный метод исследования устойчивости существенно нелинейных динамических систем Ефективний метод дослідження стійкості істотно нелінійних динамічних систем An efficient method of stability analysis for highly nonlinear dynamic systems Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Эффективный метод исследования устойчивости существенно нелинейных динамических систем |
| spellingShingle |
Эффективный метод исследования устойчивости существенно нелинейных динамических систем Смольяков, Э.Р. Кібернетика |
| title_short |
Эффективный метод исследования устойчивости существенно нелинейных динамических систем |
| title_full |
Эффективный метод исследования устойчивости существенно нелинейных динамических систем |
| title_fullStr |
Эффективный метод исследования устойчивости существенно нелинейных динамических систем |
| title_full_unstemmed |
Эффективный метод исследования устойчивости существенно нелинейных динамических систем |
| title_sort |
эффективный метод исследования устойчивости существенно нелинейных динамических систем |
| author |
Смольяков, Э.Р. |
| author_facet |
Смольяков, Э.Р. |
| topic |
Кібернетика |
| topic_facet |
Кібернетика |
| publishDate |
2019 |
| language |
Russian |
| container_title |
Кибернетика и системный анализ |
| publisher |
Інститут кібернетики ім. В.М. Глушкова НАН України |
| format |
Article |
| title_alt |
Ефективний метод дослідження стійкості істотно нелінійних динамічних систем An efficient method of stability analysis for highly nonlinear dynamic systems |
| description |
Приведен простой и быстрый метод оценки асимптотической устойчивости существенно нелинейных динамических систем, в частности систем большой размерности, для которых ряды Тейлора разложения правых частей дифференциальных уравнений сходятся медленно и сумма членов выше второго порядка малости может значительно превышать величину любого члена второго порядка. В таком случае метод функций Ляпунова не может гарантировать корректную оценку устойчивости. В основе предложенного метода процедура максимизации скорости изменения метрики пространства возмущенного состояния, которая только в частных случаях может оказаться одновременно и функцией Ляпунова. Описанная методика не рассчитана на оценку устойчивости линейных систем.
Наведено простий і швидкий метод оцінювання асимптотичної стійкості істотно нелінійних динамічних систем, зокрема систем великої розмірності, для яких ряди Тейлора розвинення правих частин диференціальних рівнянь збігаються повільно і сума членів вище другого порядку малості може суттєво перевищувати величину будь-якого члена другого порядку. У такому випадку метод функцій Ляпунова не може гарантувати коректної оцінки стійкості. В основі запропонованого методу процедура максимізації швидкості зміни метрики простору збуреного стану, яка лише в окремих випадках може бути одночасно і функцією Ляпунова. Описана методика не розрахована на оцінювання стійкості лінійних систем.
A simple and quick method is proposed for estimation of the asymptotic stability of highly nonlinear dynamic systems, in particular, of the high-dimensional systems for which Tailor series of the right-hand sides of the differential equations converge very slowly. In this case, the sum of terms of the order of smallness higher than two can substantially exceed the value of any term of second order. In this case, Lyapunov’s method cannot guarantee correct stability estimate. The new method is based on the procedure of maximization of the velocity of variation in metrics of the perturbed state space. This metrics can at the same time also be a Lyapunov function. The proposed new method is not intended for the stability estimate of linear systems.
|
| issn |
1019-5262 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/181006 |
| citation_txt |
Эффективный метод исследования устойчивости существенно нелинейных динамических систем / Э.Р. Смольяков // Кибернетика и системный анализ. — 2019. — Т. 56, № 4. — С. 15-23. — Бібліогр.: 5 назв. — рос. |
| work_keys_str_mv |
AT smolʹâkovér éffektivnyimetodissledovaniâustoičivostisuŝestvennonelineinyhdinamičeskihsistem AT smolʹâkovér efektivniimetoddoslídžennâstíikostíístotnonelíníinihdinamíčnihsistem AT smolʹâkovér anefficientmethodofstabilityanalysisforhighlynonlineardynamicsystems |
| first_indexed |
2025-12-07T17:15:38Z |
| last_indexed |
2025-12-07T17:15:38Z |
| _version_ |
1850870583657496576 |