Аксиомы неоднородной геометрии

Работа основана на гипотезе Лобачевского, что пространство на различных участках удовлетворяет различным геометриям: евклидовой, неевклидовой, проективной. На базе теории арифметических графов построены три системы алгебраических уравнений, вложенных в дискретное метрическое пространство, в котором...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Кибернетика и системный анализ
Datum:2019
1. Verfasser: Григорьян, Ю.Г.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут кібернетики ім. В.М. Глушкова НАН України 2019
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/181007
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Аксиомы неоднородной геометрии / Ю.Г. Григорьян // Кибернетика и системный анализ. — 2019. — Т. 56, № 4. — С. 24-32. — Бібліогр.: 6 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Работа основана на гипотезе Лобачевского, что пространство на различных участках удовлетворяет различным геометриям: евклидовой, неевклидовой, проективной. На базе теории арифметических графов построены три системы алгебраических уравнений, вложенных в дискретное метрическое пространство, в котором точка целое число, позволяющее определить прямую, плоскость и другие элементы, исключением является 0. Робота ґрунтується на гіпотезі Лобачевського, що простір на різних ділянках задовольняє різній геометрії: евклідовій, неевклідовій, проективній. На базі теорії арифметичних графів побудовано три системи алгебраїчних рівнянь, укладених у дискретний метричний простір, в якому точка це ціле число, що дозволяє визначити пряму, площину та інші елементи, винятком є 0. The study is based on Lobachevski’s hypothesis that the space at different areas satisfies various geometries: Euclidean, non-Euclidean, projective. On the basis of the arithmetic graph theory, three systems of algebraic equations were constructed. The systems are embedded in a discrete metric space in which point is an integer that allows defining a straight line, a plane, and other elements, except for 0.
ISSN:1019-5262