ADALINE Robust Multistep Training Algorithm

The article considers the multi-step ADALINE training algorithm when using the correntropy information criterion as a learning criterion, determines the conditions for the convergence of the algorithm, and shows that in the steady state the resulting estimate is unbiased. The importance of choosing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Control systems & computers
Datum:2020
Hauptverfasser: Rudenko, O.G., Bezsonov, O.O.
Format: Artikel
Sprache:English
Veröffentlicht: Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України 2020
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/181183
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:ADALINE Robust Multistep Training Algorithm / O.G. Rudenko, O.O. Bezsonov // Control systems & computers. — 2020. — № 3. — С. 15-27. — Бібліогр.: 40 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The article considers the multi-step ADALINE training algorithm when using the correntropy information criterion as a learning criterion, determines the conditions for the convergence of the algorithm, and shows that in the steady state the resulting estimate is unbiased. The importance of choosing the width of the Gaussian core, which affects the convergence rate of the estimation algorithms and the error in the steady state, is noted, and the feasibility of developing procedures for adaptive correction of the core width is indicated. У статті розглянуто багатокроковий алгоритм навчання АДАЛІНИ за використання в якості критерію навчання інформаційного критерію коррентропіі, визначені умови збіжності цього алгоритму і показано, що в сталому режимі одержана оцінка є незміщеною. Відзначено важливість вибору ширини Гауссова ядра, що впливає на швидкість збіжності алгоритмів оцінювання та помилку в сталому режимі, і вказано на доцільність розробки процедур адаптивної корекції ширини ядра. В статье рассмотрен многошаговый алгоритм обучения АДАЛИНЫ при использовании в качестве критерия обучения информационного критерия коррэнтропии, определены условия сходимости алгоритма и показано, что в установившемся режиме получаемая оценка является несмещенной. Отмечена важность выбора ширины Гауссова ядра, влияющей на скорость сходимости алгоритмов оценивания и ошибку в установившемся режиме, и указано на целесообразность разработки процедур адаптивной коррекции ширины ядра.
ISSN:2706-8145