Information Technology of Video Data Processing for Traffic Intensity Monitoring

Traffic jams are a huge problem for all road users and are caused by increasing traffic intensity and poor quality of traffic management systems. The systems that control traffic flows and decide to change parameters must receive reliable and up-to-date data on traffic intensity. In order to accurat...

Full description

Saved in:
Bibliographic Details
Published in:Control systems & computers
Date:2020
Main Authors: Stelmakh, O.P., Stetsenko, I.V., Velyhotskyi, D.V.
Format: Article
Language:English
Published: Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України 2020
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/181186
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Information Technology of Video Data Processing for Traffic Intensity Monitoring / O.P. Stelmakh, I.V. Stetsenko, D.V. Velyhotskyi // Control systems & computers. — 2020. — № 3. — С. 50-59. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-181186
record_format dspace
spelling Stelmakh, O.P.
Stetsenko, I.V.
Velyhotskyi, D.V.
2021-11-03T20:36:57Z
2021-11-03T20:36:57Z
2020
Information Technology of Video Data Processing for Traffic Intensity Monitoring / O.P. Stelmakh, I.V. Stetsenko, D.V. Velyhotskyi // Control systems & computers. — 2020. — № 3. — С. 50-59. — Бібліогр.: 16 назв. — англ.
2706-8145
DOI https://doi.org/10.15407/usim.2020.03.050
https://nasplib.isofts.kiev.ua/handle/123456789/181186
004.932
Traffic jams are a huge problem for all road users and are caused by increasing traffic intensity and poor quality of traffic management systems. The systems that control traffic flows and decide to change parameters must receive reliable and up-to-date data on traffic intensity. In order to accurately determine the traffic intensity, a system of automated video data processing from video surveillance cameras of the traffic lane is developed. The traffic intensity is determined by the method of obtaining the traffic congestion coefficient (TLCR) according to the data, gained by processing the video frame using the U-Net neural network, and the following transformation of TLCR time series into traffic intensity time series. The new in formation technology implements an image processing algorithm to detect the presence of vehicles in a certain section of road, a method of determining the congestion of the lane (TLCR) and a method of determining the intensity of successive values of congestion of the lane. The experimental results show that the proposed information technology is able to identify traffic intensity with an accuracy of99,35 percent.
Мета статті.Метою дослідження є підвищення точності визначення інтенсивності руху на основі аналізу відеоданих у режимі реального часу шляхом автоматизованої обробки відеоданих, отриманих від камер відеоспостереження у смузі.
Цель статьи. Целью исследования является повышение точности определения интенсивности движения на основе анализа видеоданных в режиме реального времени путем автоматизированной обработки видеоданных, полученных с камер видеонаблюдения полосы.
en
Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
Control systems & computers
Intellectual Informational Technologies and Systems
Information Technology of Video Data Processing for Traffic Intensity Monitoring
Інформаційна технологія моніторингу інтенсивності дорожнього руху за даними відеоряду
Информационная технология мониторинга интенсивности дорожного движения по данным видеоряда
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Information Technology of Video Data Processing for Traffic Intensity Monitoring
spellingShingle Information Technology of Video Data Processing for Traffic Intensity Monitoring
Stelmakh, O.P.
Stetsenko, I.V.
Velyhotskyi, D.V.
Intellectual Informational Technologies and Systems
title_short Information Technology of Video Data Processing for Traffic Intensity Monitoring
title_full Information Technology of Video Data Processing for Traffic Intensity Monitoring
title_fullStr Information Technology of Video Data Processing for Traffic Intensity Monitoring
title_full_unstemmed Information Technology of Video Data Processing for Traffic Intensity Monitoring
title_sort information technology of video data processing for traffic intensity monitoring
author Stelmakh, O.P.
Stetsenko, I.V.
Velyhotskyi, D.V.
author_facet Stelmakh, O.P.
Stetsenko, I.V.
Velyhotskyi, D.V.
topic Intellectual Informational Technologies and Systems
topic_facet Intellectual Informational Technologies and Systems
publishDate 2020
language English
container_title Control systems & computers
publisher Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
format Article
title_alt Інформаційна технологія моніторингу інтенсивності дорожнього руху за даними відеоряду
Информационная технология мониторинга интенсивности дорожного движения по данным видеоряда
description Traffic jams are a huge problem for all road users and are caused by increasing traffic intensity and poor quality of traffic management systems. The systems that control traffic flows and decide to change parameters must receive reliable and up-to-date data on traffic intensity. In order to accurately determine the traffic intensity, a system of automated video data processing from video surveillance cameras of the traffic lane is developed. The traffic intensity is determined by the method of obtaining the traffic congestion coefficient (TLCR) according to the data, gained by processing the video frame using the U-Net neural network, and the following transformation of TLCR time series into traffic intensity time series. The new in formation technology implements an image processing algorithm to detect the presence of vehicles in a certain section of road, a method of determining the congestion of the lane (TLCR) and a method of determining the intensity of successive values of congestion of the lane. The experimental results show that the proposed information technology is able to identify traffic intensity with an accuracy of99,35 percent. Мета статті.Метою дослідження є підвищення точності визначення інтенсивності руху на основі аналізу відеоданих у режимі реального часу шляхом автоматизованої обробки відеоданих, отриманих від камер відеоспостереження у смузі. Цель статьи. Целью исследования является повышение точности определения интенсивности движения на основе анализа видеоданных в режиме реального времени путем автоматизированной обработки видеоданных, полученных с камер видеонаблюдения полосы.
issn 2706-8145
url https://nasplib.isofts.kiev.ua/handle/123456789/181186
citation_txt Information Technology of Video Data Processing for Traffic Intensity Monitoring / O.P. Stelmakh, I.V. Stetsenko, D.V. Velyhotskyi // Control systems & computers. — 2020. — № 3. — С. 50-59. — Бібліогр.: 16 назв. — англ.
work_keys_str_mv AT stelmakhop informationtechnologyofvideodataprocessingfortrafficintensitymonitoring
AT stetsenkoiv informationtechnologyofvideodataprocessingfortrafficintensitymonitoring
AT velyhotskyidv informationtechnologyofvideodataprocessingfortrafficintensitymonitoring
AT stelmakhop ínformacíinatehnologíâmonítoringuíntensivnostídorožnʹogoruhuzadanimivídeorâdu
AT stetsenkoiv ínformacíinatehnologíâmonítoringuíntensivnostídorožnʹogoruhuzadanimivídeorâdu
AT velyhotskyidv ínformacíinatehnologíâmonítoringuíntensivnostídorožnʹogoruhuzadanimivídeorâdu
AT stelmakhop informacionnaâtehnologiâmonitoringaintensivnostidorožnogodviženiâpodannymvideorâda
AT stetsenkoiv informacionnaâtehnologiâmonitoringaintensivnostidorožnogodviženiâpodannymvideorâda
AT velyhotskyidv informacionnaâtehnologiâmonitoringaintensivnostidorožnogodviženiâpodannymvideorâda
first_indexed 2025-12-07T18:20:15Z
last_indexed 2025-12-07T18:20:15Z
_version_ 1850874648871305216