Information Technology of Video Data Processing for Traffic Intensity Monitoring
Traffic jams are a huge problem for all road users and are caused by increasing traffic intensity and poor quality of traffic management systems. The systems that control traffic flows and decide to change parameters must receive reliable and up-to-date data on traffic intensity. In order to accurat...
Saved in:
| Published in: | Control systems & computers |
|---|---|
| Date: | 2020 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
2020
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/181186 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Information Technology of Video Data Processing for Traffic Intensity Monitoring / O.P. Stelmakh, I.V. Stetsenko, D.V. Velyhotskyi // Control systems & computers. — 2020. — № 3. — С. 50-59. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-181186 |
|---|---|
| record_format |
dspace |
| spelling |
Stelmakh, O.P. Stetsenko, I.V. Velyhotskyi, D.V. 2021-11-03T20:36:57Z 2021-11-03T20:36:57Z 2020 Information Technology of Video Data Processing for Traffic Intensity Monitoring / O.P. Stelmakh, I.V. Stetsenko, D.V. Velyhotskyi // Control systems & computers. — 2020. — № 3. — С. 50-59. — Бібліогр.: 16 назв. — англ. 2706-8145 DOI https://doi.org/10.15407/usim.2020.03.050 https://nasplib.isofts.kiev.ua/handle/123456789/181186 004.932 Traffic jams are a huge problem for all road users and are caused by increasing traffic intensity and poor quality of traffic management systems. The systems that control traffic flows and decide to change parameters must receive reliable and up-to-date data on traffic intensity. In order to accurately determine the traffic intensity, a system of automated video data processing from video surveillance cameras of the traffic lane is developed. The traffic intensity is determined by the method of obtaining the traffic congestion coefficient (TLCR) according to the data, gained by processing the video frame using the U-Net neural network, and the following transformation of TLCR time series into traffic intensity time series. The new in formation technology implements an image processing algorithm to detect the presence of vehicles in a certain section of road, a method of determining the congestion of the lane (TLCR) and a method of determining the intensity of successive values of congestion of the lane. The experimental results show that the proposed information technology is able to identify traffic intensity with an accuracy of99,35 percent. Мета статті.Метою дослідження є підвищення точності визначення інтенсивності руху на основі аналізу відеоданих у режимі реального часу шляхом автоматизованої обробки відеоданих, отриманих від камер відеоспостереження у смузі. Цель статьи. Целью исследования является повышение точности определения интенсивности движения на основе анализа видеоданных в режиме реального времени путем автоматизированной обработки видеоданных, полученных с камер видеонаблюдения полосы. en Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України Control systems & computers Intellectual Informational Technologies and Systems Information Technology of Video Data Processing for Traffic Intensity Monitoring Інформаційна технологія моніторингу інтенсивності дорожнього руху за даними відеоряду Информационная технология мониторинга интенсивности дорожного движения по данным видеоряда Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Information Technology of Video Data Processing for Traffic Intensity Monitoring |
| spellingShingle |
Information Technology of Video Data Processing for Traffic Intensity Monitoring Stelmakh, O.P. Stetsenko, I.V. Velyhotskyi, D.V. Intellectual Informational Technologies and Systems |
| title_short |
Information Technology of Video Data Processing for Traffic Intensity Monitoring |
| title_full |
Information Technology of Video Data Processing for Traffic Intensity Monitoring |
| title_fullStr |
Information Technology of Video Data Processing for Traffic Intensity Monitoring |
| title_full_unstemmed |
Information Technology of Video Data Processing for Traffic Intensity Monitoring |
| title_sort |
information technology of video data processing for traffic intensity monitoring |
| author |
Stelmakh, O.P. Stetsenko, I.V. Velyhotskyi, D.V. |
| author_facet |
Stelmakh, O.P. Stetsenko, I.V. Velyhotskyi, D.V. |
| topic |
Intellectual Informational Technologies and Systems |
| topic_facet |
Intellectual Informational Technologies and Systems |
| publishDate |
2020 |
| language |
English |
| container_title |
Control systems & computers |
| publisher |
Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України |
| format |
Article |
| title_alt |
Інформаційна технологія моніторингу інтенсивності дорожнього руху за даними відеоряду Информационная технология мониторинга интенсивности дорожного движения по данным видеоряда |
| description |
Traffic jams are a huge problem for all road users and are caused by increasing traffic intensity and poor quality of traffic management systems. The systems that control traffic flows and decide to change parameters must receive reliable and up-to-date data on traffic intensity. In order to accurately determine the traffic intensity, a system of automated video data processing from video surveillance cameras of the traffic lane is developed. The traffic intensity is determined by the method of obtaining the traffic congestion coefficient (TLCR) according to the data, gained by processing the video frame using the U-Net neural network, and the following transformation of TLCR time series into traffic intensity time series. The new in formation technology implements an image processing algorithm to detect the presence of vehicles in a certain section of road, a method of determining the congestion of the lane (TLCR) and a method of determining the intensity of successive values of congestion of the lane. The experimental results show that the proposed information technology is able to identify traffic intensity with an accuracy of99,35 percent.
Мета статті.Метою дослідження є підвищення точності визначення інтенсивності руху на основі аналізу відеоданих у режимі реального часу шляхом автоматизованої обробки відеоданих, отриманих від камер відеоспостереження у смузі.
Цель статьи. Целью исследования является повышение точности определения интенсивности движения на основе анализа видеоданных в режиме реального времени путем автоматизированной обработки видеоданных, полученных с камер видеонаблюдения полосы.
|
| issn |
2706-8145 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/181186 |
| citation_txt |
Information Technology of Video Data Processing for Traffic Intensity Monitoring / O.P. Stelmakh, I.V. Stetsenko, D.V. Velyhotskyi // Control systems & computers. — 2020. — № 3. — С. 50-59. — Бібліогр.: 16 назв. — англ. |
| work_keys_str_mv |
AT stelmakhop informationtechnologyofvideodataprocessingfortrafficintensitymonitoring AT stetsenkoiv informationtechnologyofvideodataprocessingfortrafficintensitymonitoring AT velyhotskyidv informationtechnologyofvideodataprocessingfortrafficintensitymonitoring AT stelmakhop ínformacíinatehnologíâmonítoringuíntensivnostídorožnʹogoruhuzadanimivídeorâdu AT stetsenkoiv ínformacíinatehnologíâmonítoringuíntensivnostídorožnʹogoruhuzadanimivídeorâdu AT velyhotskyidv ínformacíinatehnologíâmonítoringuíntensivnostídorožnʹogoruhuzadanimivídeorâdu AT stelmakhop informacionnaâtehnologiâmonitoringaintensivnostidorožnogodviženiâpodannymvideorâda AT stetsenkoiv informacionnaâtehnologiâmonitoringaintensivnostidorožnogodviženiâpodannymvideorâda AT velyhotskyidv informacionnaâtehnologiâmonitoringaintensivnostidorožnogodviženiâpodannymvideorâda |
| first_indexed |
2025-12-07T18:20:15Z |
| last_indexed |
2025-12-07T18:20:15Z |
| _version_ |
1850874648871305216 |