Vector-Matrix Method of Numerical Implementation of the Polynomial Integral Volterra Operators

The article deals with the quadrature method for the numerical implementation of polynomial integral operators. With the computer implementation of Volterra-type integral models, the typical problem is the accumulation of calculations at each step of the computational process. For its acceleration i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Математичне та комп'ютерне моделювання. Серія: Технічні науки
Datum:2020
Hauptverfasser: Ivanyuk, V.A., Fedorchuk, V.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут кібернетики ім. В.М. Глушкова НАН України 2020
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/181469
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Vector-Matrix Method of Numerical Implementation of the Polynomial Integral Volterra Operators / V.A. Ivanyuk, V.A. Fedorchuk // Математичне та комп'ютерне моделювання. Серія: Технічні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2019. — Вип. 20. — С. 40-50. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The article deals with the quadrature method for the numerical implementation of polynomial integral operators. With the computer implementation of Volterra-type integral models, the typical problem is the accumulation of calculations at each step of the computational process. For its acceleration it is suggested to apply the vector-matrix approach. The suggested approach is based on quadrature methods: rectangles, trapezoids, and Simpson's. For homogeneous polynomial integral Volterra operators of the first-, second- and third-degree, respectively, the objects in the form of vectors, matrices, and three-dimensional structures containing the coefficients of the corresponding quadrature formulas have been constructed. У статті розглядається метод квадратур для числової реалізації поліноміальних інтегральних операторів. При комп’ютерній реалізації інтегральних моделей типу Вольтерри характерною проблемою є накопичення кількості обчислень на кожному кроці обчислювального процесу. Для його пришвидшення пропонується застосовувати векторно-матричний підхід. В основі запропонованого підходу лежать методи квадратур: прямокутників, трапецій, Сімпсона. Для однорідних поліноміальних інтегральних операторів Вольтерри першого, другого та третього степеня побудовано, відповідно, у вигляді векторів, матриць та тривимірних структур об’єкти, які містять коефіцієнти відповідних квадратурних формул.
ISSN:2308-5916