Modeling of scenarios for the underground construction planning based on the foresight and cognitive modeling methodologies

The modeling of scenarios for the underground construction planning is based on the mathematical support of fore sight methodology aimed at the creation of alternative scenarios and the cognitive modeling to build scenarios for the development of a desired future and ways of their implementation....

Full description

Saved in:
Bibliographic Details
Date:2021
Main Authors: Pankratova, N.D., Pankratov, V.A.
Format: Article
Language:English
Published: Видавничий дім "Академперіодика" НАН України 2021
Series:Доповіді НАН України
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/182509
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Modeling of scenarios for the underground construction planning based on the foresight and cognitive modeling methodologies / N.D. Pankratova, V.A. Pankratov // Доповіді Національної академії наук України. — 2021. — № 5. — С. 18-24. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-182509
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1825092025-02-09T17:44:47Z Modeling of scenarios for the underground construction planning based on the foresight and cognitive modeling methodologies Моделювання сценаріїв планування підземного будівництва на основі методологій передбачення та когнітивного моделювання Pankratova, N.D. Pankratov, V.A. Інформатика та кібернетика The modeling of scenarios for the underground construction planning is based on the mathematical support of fore sight methodology aimed at the creation of alternative scenarios and the cognitive modeling to build scenarios for the development of a desired future and ways of their implementation. We propose to use these methodologies together: the results obtained at the stage of the foresight methodology should be used as initial data for the cognitive modeling. Using the foresight process at the first stage of modeling allows us, with the help of expert assessment procedures, to identify critical technologies and to construct the alternatives of scenarios with quantitative characteristics. For the justified implementation of a particular scenario, the cognitive modeling allows one to build causal relationships with the consideration of a large number of interconnections and interdependences. The developed strategy is applied to the study of underground construction objects in order to select reasonable scenarios for their future development. Моделювання сценаріїв для планування розвитку підземного будівництва базується на математичному забезпеченні методології передбачення з метою створення альтернатив сценаріїв та когнітивного моделювання для побудови сценаріїв розвитку бажаного майбутнього та шляхів їх реалізації. Ці методології пропонується використовувати разом: отримані результати на етапі методології передбачення використовують як вихідні дані для когнітивного моделювання. Використання процесу передбачення на першому етапі моделювання дозволяє за допомогою процедур експертної оцінки виявити критичні технології та побудувати альтернативні сценарії з кількісними характеристиками. Для обґрунтованої реалізації певно го сценарію використовується когнітивне моделювання, яке дозволяє будувати причинно-наслідкові зв’язки з урахуванням великої кількості взаємозв’язків та взаємозалежностей. Розроблена стратегія застосовується для вивчення об’єктів підземного будівництва з метою вибору обґрунтованих сценаріїв їх подальшого розвитку. This material is based upon work supported in part by the National Research Foundation of Ukraine under Grant 2020.01/0247. 2021 Article Modeling of scenarios for the underground construction planning based on the foresight and cognitive modeling methodologies / N.D. Pankratova, V.A. Pankratov // Доповіді Національної академії наук України. — 2021. — № 5. — С. 18-24. — Бібліогр.: 11 назв. — англ. 1025-6415 DOI: doi.org/10.15407/dopovidi2021.05.018 https://nasplib.isofts.kiev.ua/handle/123456789/182509 519.876 en Доповіді НАН України application/pdf Видавничий дім "Академперіодика" НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Інформатика та кібернетика
Інформатика та кібернетика
spellingShingle Інформатика та кібернетика
Інформатика та кібернетика
Pankratova, N.D.
Pankratov, V.A.
Modeling of scenarios for the underground construction planning based on the foresight and cognitive modeling methodologies
Доповіді НАН України
description The modeling of scenarios for the underground construction planning is based on the mathematical support of fore sight methodology aimed at the creation of alternative scenarios and the cognitive modeling to build scenarios for the development of a desired future and ways of their implementation. We propose to use these methodologies together: the results obtained at the stage of the foresight methodology should be used as initial data for the cognitive modeling. Using the foresight process at the first stage of modeling allows us, with the help of expert assessment procedures, to identify critical technologies and to construct the alternatives of scenarios with quantitative characteristics. For the justified implementation of a particular scenario, the cognitive modeling allows one to build causal relationships with the consideration of a large number of interconnections and interdependences. The developed strategy is applied to the study of underground construction objects in order to select reasonable scenarios for their future development.
format Article
author Pankratova, N.D.
Pankratov, V.A.
author_facet Pankratova, N.D.
Pankratov, V.A.
author_sort Pankratova, N.D.
title Modeling of scenarios for the underground construction planning based on the foresight and cognitive modeling methodologies
title_short Modeling of scenarios for the underground construction planning based on the foresight and cognitive modeling methodologies
title_full Modeling of scenarios for the underground construction planning based on the foresight and cognitive modeling methodologies
title_fullStr Modeling of scenarios for the underground construction planning based on the foresight and cognitive modeling methodologies
title_full_unstemmed Modeling of scenarios for the underground construction planning based on the foresight and cognitive modeling methodologies
title_sort modeling of scenarios for the underground construction planning based on the foresight and cognitive modeling methodologies
publisher Видавничий дім "Академперіодика" НАН України
publishDate 2021
topic_facet Інформатика та кібернетика
url https://nasplib.isofts.kiev.ua/handle/123456789/182509
citation_txt Modeling of scenarios for the underground construction planning based on the foresight and cognitive modeling methodologies / N.D. Pankratova, V.A. Pankratov // Доповіді Національної академії наук України. — 2021. — № 5. — С. 18-24. — Бібліогр.: 11 назв. — англ.
series Доповіді НАН України
work_keys_str_mv AT pankratovand modelingofscenariosfortheundergroundconstructionplanningbasedontheforesightandcognitivemodelingmethodologies
AT pankratovva modelingofscenariosfortheundergroundconstructionplanningbasedontheforesightandcognitivemodelingmethodologies
AT pankratovand modelûvannâscenaríívplanuvannâpídzemnogobudívnictvanaosnovímetodologíjperedbačennâtakognítivnogomodelûvannâ
AT pankratovva modelûvannâscenaríívplanuvannâpídzemnogobudívnictvanaosnovímetodologíjperedbačennâtakognítivnogomodelûvannâ
first_indexed 2025-11-28T22:29:03Z
last_indexed 2025-11-28T22:29:03Z
_version_ 1850074940063088640
fulltext 18 ОПОВІДІ НАЦІОНАЛЬНОЇ АКАДЕМІЇ НАУК УКРАЇНИ ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2021. № 5: 18—24 Ц и т у в а н н я: Pankratova N.D., Pankratov V.A. Modeling of scenarios for the underground construction planning based on the foresight and cognitive modeling methodologies. Допов. Нац. акад. наук Укр. 2021. № 5. С. 18—24. https://doi.org/10.15407/dopovidi2021.05.018 Regulation of the urban development with the purpose to increase the ecological standards and life safety in constantly growing metropolises is one of the most urgent, though insufficiently researched and difficult, world problems [1-3]. It is leads to the seeking of new places for the production facilities and social and other objects of the human activity. The space of megacities created in the process of underground construction becomes a new, underground habitat, which should be comfortable and safe for humans. Strategy of modeling of the scenarios for the underground construction planning. The proposed strategy is based on a mathematical support of the foresight methodology aimed at the creation of alternative scenarios and the cognitive modeling of scenarios for the planning of a desired future for underground constructions and ways of their implementation. The metho- https://doi.org/10.15407/dopovidi2021.05.018 UDC 519.876 N.D. Pankratova, https://orcid.org/0000-0002-6372-5813 V.A. Pankratov, https://orcid.org/0000-0002-8264-5835 Institute for Applied System Analysis NTU of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” E-mail: natalidmp@gmail.com, pankratov.volodya@gmail.com Modeling of scenarios for the underground construction planning based on the foresight and cognitive modeling methodologies Presented by Corresponding Member of the NAS of Ukraine N.D. Pankratova The modeling of scenarios for the underground construction planning is based on the mathematical support of fore sight methodology aimed at the creation of alternative scenarios and the cognitive modeling to build scenarios for the development of a desired future and ways of their implementation. We propose to use these methodologies together: the results obtained at the stage of the foresight methodology should be used as initial data for the cognitive modeling. Using the foresight process at the first stage of modeling allows us, with the help of expert assessment procedures, to identify critical technologies and to construct the alternatives of scenarios with quantitative characteristics. For the justified implementation of a particular scenario, the cognitive modeling allows one to build causal relationships with the consideration of a large number of interconnections and interdependences. The developed strategy is applied to the study of underground construction objects in order to select reasonable scenarios for their future development. Keywords: foresight, cognitive modeling, urban underground construction, geological environment, decision-making. ІНФОРМАТИКА ТА КІБЕРНЕТИКА INFORMATICS AND CYBERNETICS https://doi.org/10.15407/dopovidi2021.05.018 19ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2021. № 5 Modeling of scenarios for the underground construction planning based on the foresight... dological and mathematical support of a strategy in the form of a two-stage model based on a combination of the foresight and cognitive modeling methodologies is developed [4]. The invol- vement of scanning methods, STEEP analysis, brainstorming, and SWOT analysis at the first level of the stage allows the expert assessment to identify critical technologies in the field of economic, social, environmental, technical, technological, information and other directions [5]. The basis of this level is the analysis subsystems, which are connected by direct and feedback links to the monitoring system and field tests. The quantitative data obtained after the analysis and processing are the initial ones for the solution of foresight tasks. In this paper identifying the critical technologies, the SWOT analysis method is used. For the purpose of ranking the obtained critical technologies and identifying the most topical ones, the TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) method is applied [6]. According to the VIKOR method, a compromise solution to the problem should be an alternative that is closest to the ideal solution. Moreover, to assess the degree of alternative proximity to the ideal solu- tion, a multicriterial measure is used [7]. As soon as the critical technologies are identified we cross to the second level, using the qualitative methods for the creation of alternatives to the scenarios of socio-economic systems [4]. When the output information for the cognitive modeling is given in the statistical form, the method of constructing an integrated indicator data is proposed [8]. It allows one, at the con- struction of a cognitive map, to reasonably add or remove its vertex to break a sequence of in- terconnected nodes. The proposed strategy for the development of a socio-economic system allows us to con- struct a science-based procedure to implement a priority alternative scenario of different nature complex systems, by using the cognitive modeling. In the framework of the foregoing, let us call the studied complex system “Natural-technical geosystem”. According to the developed me- thodology of cognitive modeling of complex systems [4], the modeling is carried out in some sta- ges. At the first stage, using theoretical and practical data on the underground urban planning obtained with the methodology of foresight, a cognitive model is developed. In this case, a two-level cognitive model was obtained, since the conditions and factors that determine this comp lex system belong to different levels of the hierarchy. For example, “Environmental risks” can be attributed to the upper, more general level of the hierarchy, while “Engineering and geo- logical processes” to the lower one. At the first stage, we used cognitive models such as a cognitive map — a sign oriented graph (1) and a functional graph in the form of a weighted sign digraph [4, 9]. ,G V E á ñ , (1) where G is a cognitive map in which V are concepts, a finite set of vertices of the cognitive map , 1, 2, ... ; { }i ijV V i k E e   — the set of arcs ije of the graph, , 1, 2, ...i j m , reflect the re lationship between the vertices iV and jV ; the influence of iV on jV in the situation under study can be positive (+1), when an increase (decrease) in one factor leads to an increase (decrease) in another one, negative (–1), when an increase (decrease) in one factor leads to a decrease (increase) in another one, or absent (0). The cognitive map G corresponds to the square matrix of relations GA 20 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2021. № 5 N.D. Pankratova, V.A. Pankratov 1, is connected with , { } 0, otherwise. i j G ij if V V A a     The ratio aij can take the value “+1” or “–1”. The relation between the variables (interac- tion of factors) is a quantitative or qualitative description of the effect of changes in one variable on others at the corresponding vertices. The Vector Functional Graph , , ( , ),G X F X E  á ñ , where G is a cognitive map; X is the set of vertex parameters, and ( , )F X E is the arc trans for- mation functional. At the second stage of the cognitive modeling, to study the properties of the cognitive model, we used methods of structural stability and perturbation resistance analysis, methods for analyz- ing the model connectivity (simplicial analysis), and graph theory methods [4, 9—11]. At the third stage of the cognitive modeling, to determine the possible development of pro- cesses in a complex system and to construct the development scenarios, we used the impulse pro- cess model (modeling the propagation of disturbances in cognitive models) [11]: –1 : ( 1) ( ) ( , , ) ( ) ( )v vi i j j ij k i j ij vi v e e E x n x n f x x e P n Q n       , (2) where ( ), ( 1)x n x n  are the values of the indicator at the vertex iV at the simulation steps at the time t n and the next 1; ( )jt n P n  is the momentum that existed at the vertex jV at the time ;t n 1 2{ , , ..., }( ) iV kQ n q q q is the vector of external pulses (disturbing or cont- rolling actions) introduced to the vertices iV at the time n. Modeling of Underground Construction. The first stage. Cognitive Model Development. Table presents data on the vertices (concepts) of the hierarchical cognitive model without re- ference to a specific territory, in a generalized form. We used generalizing concepts (indicators, factors) independent of the specifics, which can be disclosed and taken into account in the fu- ture, when developing the lower levels of the hierarchical model. In Table, the vertices of the upper (first level) are denoted as , 5, 11, 13, 15, 16iI V i  . The cognitive model is a simulation model that makes it possible not to conduct an expe- riment on a “living” system, but to simulate its behavior and possible future development under the influence of various factors, generating new knowledge about the system. This allows one to justify the management decisions in a given situation. The second stage. Before using the cognitive model to determine its possible behavior, the various properties of the model are realized. In this case, the structural stability, perturbation resistance analysis, and connectivity of the model must be considered. The results of the analysis are compared with the available information on the underground construction. Resistance to perturbations. The cognitive model GI was not resistant to perturbations according to the accepted criterion [10, 11]: the maximum modulo M root of the characte- ristic equation of the matrix of relations of the graph GI is 1.82 1M   . 21ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2021. № 5 Modeling of scenarios for the underground construction planning based on the foresight... Structural stability. The analysis of the ratio of the number of stabilizing cycles (35 nega- tive feedbacks) and process accelerator cycles (33 positive feedbacks) indicates the structural stability of such a system [11]. The given example of the analysis of the cycles of the cognitive model showed the variety of cycles of the cause and effect relationships that exist in complex systems. There are 68 of them in the analyzed system. Without an appropriate theoretical analysis, there is a great risk of the human factor in making managerial decisions, because its consequences may not be obvious due to the complexity of interactions in the system. The third stage of modeling. The scenario analysis is designed to forecast possible trends in the development of situations on the model. To generate scenarios of the development of the system, the impacts are introduced into the vertices of the cognitive map in the form of a set of impulses. The impulse process formula has the form (2). Let us introduce perturbations Q of different sizes (normalized) to any of the vertices, as well as to their combination. In connection with a large number of theoretically possible variants of introduced disturbances, it is expedient to develop a plan for a computational experiment before excluding pulse simulation, eliminating at least almost impossible variants. Introducing disturbances to the vertices, the decision-maker is looking for the answer to the question: “What will happen if ...?” The software system gives possibility, in the process of pulse modeling and The vertices of the hierarchical cognitive map “Natural-technical geosystem” Code Vertex explanation Vertex assignment I – V11 The viability of the underground urban development Indicative I – V13 Disasters, extreme and emergency situations Perturbing I – V15 Environmental risks Perturbing I – V16 Economic risks Perturbing I – V6 Genetic type and lithological composition of soils Basic V1 Mountain and hydrostatic pressure, seismic impact Basic V2 Surface Static Load Index Basic V3 The indicator of the static load of the surrounding soil massif Basic V4 Existing underground facilities Disturbing V6 Estimated soil resistance Basic V7 Aquifers and High Water Disturbing V8 Relief Type and Morphometry Basic V9 Engineering and geological processes Disturbing V10 Mining construction technologies Regulating V12 The level of comfort of the work and rest during the construction and operation of underground structures Indicative V14 Construction, operational, managementrisks Disturbing V17 Staff qualifications Regulating V18 Industrial Safety Basic V19 Quality and construction time Regulating 22 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2021. № 5 N.D. Pankratova, V.A. Pankratov analysis of the obtained results, to introduce the controlling or disturbing influences at any modeling step. This allows us to change (correct) scenarios in the model dynamics and to de- termine the effects that bring the processes closer to the desired ones. Here, we present the results of a pulse modeling of one of the best scenarios. Suppose impro- ving Engineering and geological processes ( 9V ), Mining construction technologies ( 10V ), Staff qualifications ( 17V ), Quality and construction time ( 19V ), but there are Disasters, extreme and emergency situations ( 13I V ). Control actions of scenario: 9 10 17 19 131, 1, 1, 1, 1q q q q q          , the perturbation vector 1 9{ 0, Q q q    10 13 17 191, 1, 1, 1, 1}q q q q             . The results of a pulse modeling are presented in Fig., a for vertices 13I V , V9, 10V , 19V , 15I V , 16I V , 18V , V17, 11I V and Fig., b for vertices 17V , 18V , 19V , I – V11, 12V , 14V , 13I V . The analysis of the results of a pulse modeling according to this scenario shows that the introduction of control actions to the indicated vertices can counteract the negative impact of possible disasters and extreme situations, reducing the impact of economic, environmental, and technological risks. Thus, the scenario can be considered favorable, since the industrial safety is increasing. The process of pulse modeling 23ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2021. № 5 Modeling of scenarios for the underground construction planning based on the foresight... Conclusion. It is planned to use the proposed strategy for creating the scenarios for real geotechnological objects of underground construction. This material is an important formalized part and shows the possibility of making a decision under conditions of the geological uncer- tainty and multifactorial risks. It should be noted the importance of the proposed strategy to planning the development of the underground space of Kiev and underwater tunnels under the Dnieper river. If we approach the construction of such structures as a joint complex (car and subway tunnels, underground culverts near the Dnieper river, a tunnel on the ring highway, etc.), the combination of geoinformation, experience, panel tunneling units and equipment, production and supply of construction materials can dramatically reduce costs for the underground con- struction of these facilities and improve the quality and efficiency of tunneling. Most importantly, the use of underground constructions will increase the quality and safety of people’s lives. This material is based upon work supported in part by the National Research Foundation of Ukraine under Grant 2020.01/0247 REFERENCES 1. World Urbanization Prospects 2018: Highlights. United Nations. New York (2019) https://population.un.org/wup/Publications/Files/ WUP2018-Highlights.pdf 2. Levchenko, A. N. (2007). About a new direction of scientific research in construction geotechnology. Mining information and analytical bulletin (scientific and technical journal). No. 2, pp.15-21. 3. Kartosia, B. A. (2015). Mastering the underground space of large cities. New Trends. Mining Information and Analytical Bulletin (scientific and technical magazine), “Construction and Architecture”, pp.615-628. 4. Innovative development of socio-economic systems based on foresight and cognitive modeling methodo- logies (2015). Gorelova G.V. & Pankratova N.D. (Eds.). Kiev: Naukova Dumka (in Russian). 5. Zgurovsky, M. Z. & Pankratova, N. D. (2007). System analysis: Theory and Applications. Berlin Heidelberg New York: Springer. 6. García-Cascale, M. S. & Lamata, M. T. (2012). On rank reversal and TOPSIS method. Mathematical and Computer Modeling, 56, No. 5–6, pp. 123-132. 7. Mardani, A., Zavadskas, E., Govindan, K., Senin, A. & Jusoh, A. (2016). VIKOR Technique: A Systematic Review of the State of the Art Literature on Methodologies and Applications. Sustainability, 8, No. 37, pp. 1-38. 8. Pankratov, V. (2014). Development of the approach to formalization of vector’s indicators of sustainable development. J. Information Technologies & Knowledge. ITHEA. SOFIA, 8, No. 3, pp. 203-211. 9. Abramova, N. A. & Avdeeva, Z. K. (2008). Cognitive analysis and management of the development of si tuations: problems of methodology, theory and practice. J. Problems of control, 3, pp. 85-87. 10. Atkin, R. H. (1997). Combinatorial Connectivies in Social Systems. An Application of Simplicial Complex Structures to the Study of Large Organisations’, Interdisciplinary Systems Research. 11. Roberts, F. (1978). Graph Theory and its Applications to Problems of Society, Society for Industrial and Applied Mathematics (Philadelphia). Received 11.07.2021 24 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2021. № 5 N.D. Pankratova, V.A. Pankratov Н.Д. Панкратова, https://orcid.org/0000-0002-6372-5813 В.А. Панкратов, https://orcid.org/0000-0002-8264-5835 Інститут прикладного системного аналізу НТУ України «Київський політехнічний інститут ім. Ігоря Сікорського» E-mail: natalidmp@gmail.com, pankratov.volodya@gmail.com МОДЕЛЮВАННЯ СЦЕНАРІЇВ ПЛАНУВАННЯ ПІДЗЕМНОГО БУДІВНИЦТВА НА ОСНОВІ МЕТОДОЛОГІЙ ПЕРЕДБАЧЕННЯ ТА КОГНІТИВНОГО МОДЕЛЮВАННЯ Моделювання сценаріїв для планування розвитку підземного будівництва базується на математичному забезпеченні методології передбачення з метою створення альтернатив сценаріїв та когнітивного моделю- вання для побудови сценаріїв розвитку бажаного майбутнього та шляхів їх реалізації. Ці методології пропонується використовувати разом: отримані результати на етапі методології передбачення викорис- товують як вихідні дані для когнітивного моделювання. Використання процесу передбачення на першому етапі моделювання дозволяє за допомогою процедур експертної оцінки виявити критичні технології та побудувати альтернативні сценарії з кількісними характеристиками. Для обґрунтованої реалізації пев- но го сценарію використовується когнітивне моделювання, яке дозволяє будувати причинно-наслід кові зв’язки з урахуванням великої кількості взаємозв’язків та взаємозалежностей. Розроблена стратегія застосовується для вивчення об’єктів підземного будівництва з метою вибору обґрунтованих сценаріїв їх подальшого розвитку. Ключові слова: передбачення, когнітивне моделювання, міське підземне будівництво, геологічне середовище, прийняття рішень