Вінерів процес у евклідовому просторі з мембраною на даній гіперплощині

Побудовано вінерів процес у евклідовому просторі з мембраною на заданій гіперплощині такою, що її коефіцієнт пропускання є вимірною функцією зі значеннями в проміжку [–1, 1], та доведено теорему про граничний розподіл кількості перетинів мембрани дискретною апроксимацією цього процесу за умови, що...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Доповіді НАН України
Datum:2022
Hauptverfasser: Копитко, Б.І., Портенко, М.І.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Видавничий дім "Академперіодика" НАН України 2022
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/184924
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Вінерів процес у евклідовому просторі з мембраною на даній гіперплощині / Б.І. Копитко, М.І. Портенко // Доповіді Національної академії наук України. — 2022. — № 1. — С. 3-10. — Бібліогр.: 6 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Побудовано вінерів процес у евклідовому просторі з мембраною на заданій гіперплощині такою, що її коефіцієнт пропускання є вимірною функцією зі значеннями в проміжку [–1, 1], та доведено теорему про граничний розподіл кількості перетинів мембрани дискретною апроксимацією цього процесу за умови, що величина кроку дискретизації часу прямує до нуля. У випадку пористої мембрани граничний розподіл допускає прозору інтерпретацію. For the Brownian motion in a Euclidean space, a membrane located on a given hyperplane and acting in the normal direction is constructed such that its so-called permeability coefficient can be given by an arbitrary measurable function defined on that hyperplane and taking on its values in the interval [–1, 1]. In all the previous investigations on the topic that coefficient was supposed to be a continuous function. A limit theorem for the number of crossings of the hyperplane by a discrete approximation of the process constructed is proved. A curious interpretation for the limit distribution in that theorem can be given in the case of the membrane being porous.
ISSN:1025-6415