Розв’язання задачі про докритичний стан крайової тріщини в рамках підходу моделі когезійної зони

Розглянуто задачу про докритичний стан крайової тріщини нормального відриву в напівнескінченній ізотропній площині. Розв’язок побудовано в рамках підходу моделі зони зчеплення, в основі якої лежить нерівномірний зв’язок між поверхневими силами зчеплення і відриву берегів фіктивного розрізу. Цей розр...

Full description

Saved in:
Bibliographic Details
Date:2022
Main Authors: Селіванов, М.Ф., Процан, В.В.
Format: Article
Language:Ukrainian
Published: Видавничий дім "Академперіодика" НАН України 2022
Series:Доповіді НАН України
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/184928
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Розв’язання задачі про докритичний стан крайової тріщини в рамках підходу моделі когезійної зони / М.Ф. Селіванов, В.В. Процан // Доповіді Національної академії наук України. — 2022. — № 1. — С. 39-47. — Бібліогр.: 9 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Розглянуто задачу про докритичний стан крайової тріщини нормального відриву в напівнескінченній ізотропній площині. Розв’язок побудовано в рамках підходу моделі зони зчеплення, в основі якої лежить нерівномірний зв’язок між поверхневими силами зчеплення і відриву берегів фіктивного розрізу. Цей розріз моделює зону передруйнування, що утворюється біля фронту тріщини. В основу розв’язку покладено регуляризоване сингулярне рівняння з узагальненим ядром Коші, яке розв’язується методом колокації. Плавність змикання берегів тріщини забезпечується введенням ділянки зростання в закон зчеплення–відриву. Числовий приклад побудовано для згладженого трапецоїдального закону. Проілюстровано відсутність осциляції розв’язку, вказано на появу сингулярності внаслідок розривності граничних умов на контурі модельного розрізу уразі дослідження докритичного стану. Вказано на розбіжності розв’язків рівнянь першого і другого родів для невеликих довжин зчеплення.