A numerical technique to solve a problem of the fluid motion in a straight plane rigid duct with two axisymmetric rectangular constrictions

A second-order numerical technique is developed to study the steady laminar fluid motion in a straight two-dimensional hard-walled duct with two axisymmetric rectangular constrictions. In this technique, the governing relations are solved via deriving their integral analogs, performing a discretiz...

Full description

Saved in:
Bibliographic Details
Published in:Доповіді НАН України
Date:2022
Main Author: Borysyuk, A.O.
Format: Article
Language:English
Published: Видавничий дім "Академперіодика" НАН України 2022
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/184929
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:A numerical technique to solve a problem of the fluid motion in a straight plane rigid duct with two axisymmetric rectangular constrictions / A.O. Borysyuk // Доповіді Національної академії наук України. — 2022. — № 1. — С. 48-57. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-184929
record_format dspace
spelling Borysyuk, A.O.
2022-08-26T14:02:12Z
2022-08-26T14:02:12Z
2022
A numerical technique to solve a problem of the fluid motion in a straight plane rigid duct with two axisymmetric rectangular constrictions / A.O. Borysyuk // Доповіді Національної академії наук України. — 2022. — № 1. — С. 48-57. — Бібліогр.: 5 назв. — англ.
1025-6415
DOI: doi.org/10.15407/dopovidi2022.01.048
https://nasplib.isofts.kiev.ua/handle/123456789/184929
532.542
A second-order numerical technique is developed to study the steady laminar fluid motion in a straight two-dimensional hard-walled duct with two axisymmetric rectangular constrictions. In this technique, the governing relations are solved via deriving their integral analogs, performing a discretization of these analogs, simplifying the obtained (after making the discretization) coupled nonlinear algebraic equations, and the final solution of the resulting (after making the simplification) uncoupled linear ones. The discretization consists of the spatial and temporal parts. The first of them is performed with the use of the TVD-scheme and a two-point scheme of discretization of the spatial derivatives, whereas the second one is made on the basis of the implicit three-point asymmetric backward differencing scheme. The above-noted uncoupled linear algebraic equations are solved by an appropriate iterative method, which uses the deferred correction implementation technique and the technique of conjugate gradients, as well as the solvers ICCG and Bi-CGSTAB.
Розроблено чисельний метод розв’язування задачі про стаціонарний ламінарний рух рідини у прямому плоскому жорсткому каналі з двома осесиметричними прямокутними звуженнями. Цей метод має другий порядок точності. У ньому співвідношення, що описують зазначений рух, розв’язуються шляхом одержання їхніх інтегральних аналогів, дискретизації цих аналогів, зведення зв’язаних нелінійних алгебраїчних рівнянь (одержаних внаслідок дискретизації) до відповідних незалежних лінійних і подальшого розв’язування останніх. Зазначена дискретизація складається із просторової та часової частин. Перша з них виконується на основі використання TVD-схеми, а також двоточкової схеми дискретизації просторових похідних. При проведенні ж другої частини дискретизації застосовується неявна триточкова несиметрична схема з різницями назад. Що стосується методу розв’язування вказаних незалежних лінійних рівнянь, то це — відповідний ітераційний метод, який використовує методи відкладеної корекції та спряжених градієнтів, а також солвери ICCG та Bi-CGSTAB.
en
Видавничий дім "Академперіодика" НАН України
Доповіді НАН України
Механіка
A numerical technique to solve a problem of the fluid motion in a straight plane rigid duct with two axisymmetric rectangular constrictions
Чисельний метод розв’язування задачі про рух рідини у прямому плоскому жорсткому каналі з двома осесиметричними прямокутними звуженнями
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A numerical technique to solve a problem of the fluid motion in a straight plane rigid duct with two axisymmetric rectangular constrictions
spellingShingle A numerical technique to solve a problem of the fluid motion in a straight plane rigid duct with two axisymmetric rectangular constrictions
Borysyuk, A.O.
Механіка
title_short A numerical technique to solve a problem of the fluid motion in a straight plane rigid duct with two axisymmetric rectangular constrictions
title_full A numerical technique to solve a problem of the fluid motion in a straight plane rigid duct with two axisymmetric rectangular constrictions
title_fullStr A numerical technique to solve a problem of the fluid motion in a straight plane rigid duct with two axisymmetric rectangular constrictions
title_full_unstemmed A numerical technique to solve a problem of the fluid motion in a straight plane rigid duct with two axisymmetric rectangular constrictions
title_sort numerical technique to solve a problem of the fluid motion in a straight plane rigid duct with two axisymmetric rectangular constrictions
author Borysyuk, A.O.
author_facet Borysyuk, A.O.
topic Механіка
topic_facet Механіка
publishDate 2022
language English
container_title Доповіді НАН України
publisher Видавничий дім "Академперіодика" НАН України
format Article
title_alt Чисельний метод розв’язування задачі про рух рідини у прямому плоскому жорсткому каналі з двома осесиметричними прямокутними звуженнями
description A second-order numerical technique is developed to study the steady laminar fluid motion in a straight two-dimensional hard-walled duct with two axisymmetric rectangular constrictions. In this technique, the governing relations are solved via deriving their integral analogs, performing a discretization of these analogs, simplifying the obtained (after making the discretization) coupled nonlinear algebraic equations, and the final solution of the resulting (after making the simplification) uncoupled linear ones. The discretization consists of the spatial and temporal parts. The first of them is performed with the use of the TVD-scheme and a two-point scheme of discretization of the spatial derivatives, whereas the second one is made on the basis of the implicit three-point asymmetric backward differencing scheme. The above-noted uncoupled linear algebraic equations are solved by an appropriate iterative method, which uses the deferred correction implementation technique and the technique of conjugate gradients, as well as the solvers ICCG and Bi-CGSTAB. Розроблено чисельний метод розв’язування задачі про стаціонарний ламінарний рух рідини у прямому плоскому жорсткому каналі з двома осесиметричними прямокутними звуженнями. Цей метод має другий порядок точності. У ньому співвідношення, що описують зазначений рух, розв’язуються шляхом одержання їхніх інтегральних аналогів, дискретизації цих аналогів, зведення зв’язаних нелінійних алгебраїчних рівнянь (одержаних внаслідок дискретизації) до відповідних незалежних лінійних і подальшого розв’язування останніх. Зазначена дискретизація складається із просторової та часової частин. Перша з них виконується на основі використання TVD-схеми, а також двоточкової схеми дискретизації просторових похідних. При проведенні ж другої частини дискретизації застосовується неявна триточкова несиметрична схема з різницями назад. Що стосується методу розв’язування вказаних незалежних лінійних рівнянь, то це — відповідний ітераційний метод, який використовує методи відкладеної корекції та спряжених градієнтів, а також солвери ICCG та Bi-CGSTAB.
issn 1025-6415
url https://nasplib.isofts.kiev.ua/handle/123456789/184929
citation_txt A numerical technique to solve a problem of the fluid motion in a straight plane rigid duct with two axisymmetric rectangular constrictions / A.O. Borysyuk // Доповіді Національної академії наук України. — 2022. — № 1. — С. 48-57. — Бібліогр.: 5 назв. — англ.
work_keys_str_mv AT borysyukao anumericaltechniquetosolveaproblemofthefluidmotioninastraightplanerigidductwithtwoaxisymmetricrectangularconstrictions
AT borysyukao čiselʹniimetodrozvâzuvannâzadačíproruhrídiniuprâmomuploskomužorstkomukanalízdvomaosesimetričnimiprâmokutnimizvužennâmi
AT borysyukao numericaltechniquetosolveaproblemofthefluidmotioninastraightplanerigidductwithtwoaxisymmetricrectangularconstrictions
first_indexed 2025-11-27T01:48:58Z
last_indexed 2025-11-27T01:48:58Z
_version_ 1850791901719953408
fulltext 48 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2022. № 1: 48—57 Ц и т у в а н н я: Borysyuk A.O. A numerical technique to solve a problem of the fluid motion in a straight plane rigid duct with two axisymmetric rectangular constrictions. Допов. Нац. акад. наук Укр. 2022. № 1. С. 48—57. https://doi.org/10.15407/dopovidi2022.01.048 Study of flows in ducts is an actual problem in the gas-oil industry, architecture, medicine, municipal economy, etc. Among others, a significant interest is related here to studying the flows in ducts with local constrictions. That is explained by the fact that such irregularities in the duct geometry cause local changes in the flow structure and/or character, etc. Those changes can result in the corresponding consequences not only in a vicinity of, but also far from the irregularities [1]. As analysis of the scientific literature shows, the study of flows in ducts with local constric- tions has been paid much attention to. In those studies, straight hard-walled ducts and their constrictions of the simplest geometries were considered. The basic flow (i.e., the flow upstream of a (first) constriction) was laminar, axisymmetric, and steady. As for fluids, they were assumed to be homogeneous, incompressiblem and Newtonian (the other types of ducts, their constric- https://doi.org/10.15407/dopovidi2022.01.048 UDC 532.542 A.O. Borysyuk, Corresponding Member of the NAS of Ukraine, https://orcid.org/0000-0002-3878-3915 Institute of Hydromechanics of the NAS of Ukraine, Kyiv E-mail: aobor@ukr.net A numerical technique to solve a problem of the fluid motion in a straight plane rigid duct with two axisymmetric rectangular constrictions A second-order numerical technique is developed to study the steady laminar fluid motion in a straight two-dimen- sional hard-walled duct with two axisymmetric rectangular constrictions. In this technique, the governing relations are solved via deriving their integral analogs, performing a discretization of these analogs, simplifying the obtained (after making the discretization) coupled nonlinear algebraic equations, and the final solution of the resulting (after making the simplification) uncoupled linear ones. The discretization consists of the spatial and temporal parts. The first of them is performed with the use of the TVD-scheme and a two-point scheme of discretization of the spatial derivatives, whereas the second one is made on the basis of the implicit three-point asymmetric backward differencing scheme. The above-noted uncoupled linear algebraic equations are solved by an appropriate iterative method, which uses the deferred correction implementation technique and the technique of conjugate gradients, as well as the solvers ICCG and Bi-CGSTAB. Keywords: fluid motion, flat duct, rectangular constriction, technique. МЕХАНІКА MECHANICS 49ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2022. № 1 A numerical technique to solve a problem of the fluid motion in a straight plane rigid duct.... tions, fluidsm and the basic flow are not considered in this paper, because they were studied much less intensively compared with the noted ones). These allowed one, on the one hand, to study (within the framework of appropriate models chosen and with acceptable accu racy) the influence of the basic parameters of a duct, its constriction(s) and the basic flow on the flow not only nearm but also far downstream of the constriction(s), and, on the other hand, to simplify significantly solutions to the corresponding problems of interest [1-4]. Among the results obtained in those studies, numerical methods, which have been develo ped to investigate flows around duct constrictions, are of a particular interest. One of the latest of them was presented in [1]. It has been devised to solve a problem of the flow in a straight hard- walled two-dimensional duct with two rigid constrictions of a rectangular axisymmetric shape. That method allows one to study the fluid motion in the noted duct in the stream function–vor- ticity–pressure variables, has high stability of a solution and the second order of accuracy in the spatial co-ordinates. However, its first order of accuracy in the temporal coord inate should ap- parently stimulate researchers either to develop more accurate appropriate computational tech- niques or to improve the method in such a way to make its temporal accu racy higher. In this study, an alternative technique is presented to solve the same problem. This technique uses the fluid velocity and the pressure as the basic variables, has nearly the same stability of a solution, the same order of accuracy in the spatial coordinates and higher (i.e., the second) order of accuracy in the temporal coordinate. However, due to the large amount of mathematical operations used in this technique, it needs a more computational time to obtain a solution com- pared to the above one. Statement of the problem. A straight hard-walled plane duct of dimensionless width 1, having two rigid constrictions of a rectangular axisymmetric shape, is considered (Fig. 1). The constrictions are situated at the distance 12L from each other, and have the diameters iD and the lengths iL ( 1, 2i = ). In this duct, a viscous homogeneous Newtonian fluid moves. The fluid has mass density ρ and kinematic viscosity ν . Its flow is characterized by a small Mach number and the rate Q per unit depth of the duct. In addition, the flow upstream of the first constriction (i.e., the basic flow) is steady and laminar. It is necessary to study the flow around the constrictions. The fluid motion in the duct is governed by the dimensionless momentum and continuity equations, viz. 1 Re i i i j j i j j U U UP U T X X X X ⎛ ⎞∂ ∂ ∂∂ ∂ + = − + ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ , 1,2i = , (1) Fig. 1. Geometry of the problem and the computational domain 50 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2022. № 1 A.O. Borysyuk / 0i iU X∂ ∂ = . (2) The boundary conditions consist in the absence of a fluid motion at the channel wall, chS , and on both constrictions, jS , ( 1, 2)j = . Also, the flow rate Q must be invariable along the duct axis, viz. , 0 ch j i S S U = , 1/ 0Q X∂ ∂ = , 1Q = , , 1, 2i j = . (3) Apart from these, the parabolic velocity profile is specified outside the disturbed flow region due to the constrictions 1, viz. 1 1 12 2 2 1 2– , 1.5(1 4 ) u dX L L L L L U X = + + + = − , 1 1 12 2 2 – , 0 u dX L L L L L U = + + + = . (4) As for the pressure P , it is assumed to be constant both sufficiently far upstream of the first constriction 1 – ( ) u uX L P P = = , and far downstream of the second one 1 1 12 2 ( ) d dX L L L L P P = + + + = . In addition, the corresponding pressure drop, 0u dP P PΔ = − > , should ensure the existence of the given laminar regime of the basic flow. Also, without loss of generality, the pressure dP is taken to be zero 2, and the magnitude uP , like the pressure in the whole duct, needs to be found. Apart from these, the normal pressure derivative is zero on the rigid walls of the channel and both its con strictions, viz. ,( / ) 0 ch jS SP n∂ ∂ = , 1, 2j = . (5) Regarding the initial conditions, they are in the absence of a fluid motion in the channel at the time instant 0T = [1], viz. 0 0 T P = = , 0 0i T U = = . (6) In (1)-(6), 1 2 3, ,X X X are the rectangular Cartesian coordinates shown in Fig. 1 (here, the axis 3X is normal to the plane 1 2X X and directed to us); T the time; iU the local fluid velocities in the directions iX ; Re /aU D= ν the Reynolds number of the cross-sectionally ave- raged basic flow; aU its velocity; and the values of the distances uL and dL are given in the next section. In addition, hereinafter, the vector n  denotes the outward unit normal to the appro priate surface, and the summation over repeated indices is assumed throughout the paper. As for the scaling factors used in (1)-(6), these are the duct width D as the length scale, the velocity aU as the velocity scale, the product aU D as the flow rate scale, the ratio / aD U as the time scale, and the product 2 aUρ as the pressure scale. 1 This is the region before the constrictions, where the flow is still undisturbed by them, and far behind them, where the flow is already undisturbed (i.e., where the flow disturbances disappear, and it becomes like the basic one). 2 A choice of the value of dP always can be compensated for by the choice of the corresponding value of uP in such a way that the corresponding pressure drop PΔ (which governs fluid motion in the duct) remains unchangeable. 51ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2022. № 1 A numerical technique to solve a problem of the fluid motion in a straight plane rigid duct.... Computational domain. The domain, in which a solution to the problem should be found, is shown in Fig. 1. It is restricted by the duct sections 1 uX L= − , 1 1 12 2 dX L L L L= + + + and 3 3aX X= , 3 3 3daX X X= + (where 3d 1X << , and 3aX is an arbitrary value of the coordinate 3X ). Herewith, the boundary 1 uX L= − is taken upstream of the first constriction, where the flow is still undisturbed by it, and the boundary 1 1 12 2 dX L L L L= + + + behind the second con- striction, where the flow disturbances already disappear, and the flow redevelops into the basic state at 1 uX L= − . As for the distances uL and dL , for the basic flow velocities considered in this study, their values should vary in the ranges 0.5uL  and 12dL  [1, 2]. The chosen computational domain is divided into the small volumes Vnm by the duct sec- tions 1 1nX X= and 2 2mX X= (where 1 1( 1) 1dn nX X X−= + , 1d 1X << , and 2 2( 1) 2dm mX X X−= + , 2d 1X << ), as shown in Fig. 2. Herewith, in order to have a smooth velocity profile in an arbit- rary duct cross-section, the steps 1dX and 2dX are reduced in an appropriate manner as one approaches either the duct or constrictions’ walls. Integral equations and their discrete analogs. Integral analogs of Eqs. (1) and (2) are obtained by their integrating over the control volumes Vnm (in making this operation, the appropriate conservation laws take place in each volume Vnm ). It gives V V V V 1 d d d d Re nm nm nm nm i i i j j i j j U UP U V U V V V T X X X X ⎛ ⎞∂ ∂∂ ∂ ∂ + = − + ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫ , (7) V ( / )d 0 nm i iU X V∂ ∂ =∫∫∫ . (8) The application (wherever possible) of the Gauss theorem to the terms of Eqs. (7) and (8), and/or the expansion (wherever needed) of their integrands (which are denoted by ( )f r   ) in the Fig. 2. A scheme of fragmentation of the computational domain into small volumes 52 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2022. № 1 A.O. Borysyuk Taylor series around the mass center Cnm of the volume3 Vnm (Fig. 2), further use of the first two terms of these series (i.e., ( ) ( ) ( ) ( ) nm nm cnm c cr r f r f r f r r = = +∇ ⋅ −        ), making the discretization of the temporal and spatial derivatives on the basis of the implicit three-point non-symmetric backward differencing and two-point schemes [5], respectively, viz. 1 2( , ) 1.5 2 0.5 nm nm nm nm k k k c c c cf r T f f f T T − −∂ − + = ∂ Δ     , ( )( ) ( / ) jcj nmcnm i i r rr r f e f X == ∇ = ∂ ∂      , ( 1) (1) 1 1 ( ) ( ) d n m nm cnm c c r r f r f rf X X + = −∂ = ∂     , ( 1) (2) 1 1 ( ) ( ) d nm n m cnm c c r r f r f rf X X − = −∂ = ∂     , ( 1) (3) 2 2 ( ) ( ) d n m nm cnm c c r r f r f rf X X + = −∂ = ∂     , ( 1) (4) 2 2 ( ) ( ) d nm n m cnm c c r r f r f rf X X − = −∂ = ∂     , as well as the application (wherever necessary) of the following TVD-scheme [5] ( ) ( ) ( ) ( ) 1 2 1( ) ( )j nm j j j c f r f f f= +Φ −     , ( ) 1 ( ), ( ), nm j cj c f r f f r ⎧ ⎪= ⎨ ⎪⎩      ( ) ( ) 0, 0, j nm j nm F F <  1 ( 1)n mC C += , 2 ( 1)n mC C −= , 3 ( 1)n mC C += , 4 ( 1)n mC C −= , ( ) 2 ( ) (1 ) ( ) nm j j j c j cf f r f r= α + −α     , ( ) /j j nm jnm j c c cc r r r rα = − −     , ( ) max(0, min(4 ,1))j jΦ η = η , ( ) ( )( ) ( ) / ( ) ( )j jnm jnm nm j c cc c U r U r U r U rη = − −        , allows one to proceed to considering the discrete analogs of Eqs. (7) and (8), viz. ( ) ( ) 1 2 4 4 ( ) ( ) 1 1 1.5 2 0.5 1 V Re nm nm nm j j nm nm k k k ic ic ic j k k k j nm nm j nmic ic j j U U U F U U n S T − − = = − + + − ∇ ⋅ = Δ ∑ ∑   ( ) 4 ( ) 1 ( / ) V j nm nm k j ji nmc j k i C nm P n S P X = ⎧ ⎪⎪= −⎨ ⎪ ∂ ∂⎪⎩ ∑ , (9) 3 Since the fluid in the duct is homogeneous (see the problem formulation), the mass center of the volume Vnm coincides with its geometrical center. The analogous situation is with the mass center of each side face of the volume Vnm . 53ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2022. № 1 A numerical technique to solve a problem of the fluid motion in a straight plane rigid duct.... ( ) ( ) 4 4 4 ( ) ( ) ( ) 1 1 1 0j j nm nm k j k j j k j nm ji nm nmc ic j j j U n S U n S F = = = ⋅ = = =∑ ∑ ∑   , (10) which have the second order of accuracy. Here ∇  is the gradient; i ir X e=   and nm nmc ic ir X e=   the position vectors of an arbitrary point in the region Vnm and its mass cen ter nmC , respecti vely; the point in the Taylor series in dicates the scalar product of the corresponding magnitudes; ie  the unit directivity vector of the axis iX ; TΔ the small time step; nm k cf  and ( )j nm k c f  the values of the function f  at the points nmC and ( )j nmC at the time instant T k T= Δ ; ( )j nmC the mass center of the side face ( )j nmS of the volume Vnm ; 1 nm k cf −  and 2 nm k cf −  the known values of the function f  at the point nmC at the moments ( 1)T k T= − Δ and ( 2)T k T= − Δ , respectively; Vnm the vol- ume of the region Vnm; ( )j nmS and j ji in n e=   the area and the outward unit normal to the face ( )j nmS ( 1 1n e=   , 2 1n e= −   , 3 2n e=   , 4 2n e= −   , 5 3n e=   , 6 3n e= −   ; Fig. 3); and ( ) ( ) ( ) j nm j k k j nm j nmc F U n S= ⋅   the fluid flow across the face ( )j nmS at the moment T k T= Δ . Discrete analogs of conditions (3)-(6) and their application to Eqs. (9) and (10). The discrete analogs of conditions (3)-(5) on the boundary of the computational domain are as follows: 1 1 12 2 2 1 2, 1.5(1 4 ) u d k X L L L L L U X =− + + + = − , 1 1 12 2 2 , 0 u d k X L L L L L U =− + + + = , , 0 ch j k i S S U = , 1/ 0kQ X∂ ∂ = , 1kQ = , 0.5uL  , 12dL  , , 1, 2i j = , (1) 1 1 12 2 0 nm d k c X L L L L P = + + + = , 2( / ) 0 ch k SP X∂ ∂ = , ( / ) 0 j k SP n∂ ∂ = . They allow one to find ( )j k nmF and ( )j nm k ic U∇  on the noted boundary in Eqs. (9) and (10), viz. 1 2 ( ) , , 0 ch j k nm S S S F = , 1 1 12 2 1 1 12 2 (3) (4) , , 0 u d u d k k nm nmX L L L L L X L L L L L F F =− + + + =− + + + = = , 1 (2) 2 2 2 31.5(1 4 )d d u k nm X L F X X X =− = − − , 1 1 12 2 (1) 2 2 2 31.5(1 4 )d d d k nm X L L L L F X X X = + + + = − , (3) 2 2 2 1/2 / d nmnm k k icic X U e U X = ∇ = −   , (4) 2 2 2 1/2 / d nmnm k k icic X U e U X =− ∇ =   , 1 0uL X−   , 1 1 1 12L X L L+  , 1 12 2 1 1 12 2 dL L L X L L L L+ + + + +  , Fig. 3. The small volume Vnm, its side faces ( )i nmS and their outward unit normals in  ( 1, ..., 6)i = 54 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2022. № 1 A.O. Borysyuk (2) 1 2 21 12 nm u k c X L U X e =− ∇ = −   , (1) 1 1 12 2 2 21 12 nm d k c X L L L L U X e = + + + ∇ = −   , (2) 1 2 0 nm u k c X L U =− ∇ =  , (1) 1 1 12 2 2 0 nm d k c X L L L L U = + + + ∇ =  , (1) 0, /2 1/2, 1/2 1/2 /21 1 2 2 1 , /2 1/2, 1/2 1/2 /21 1 12 2 2 2 2 1 1/ d nmnm X D X X D X L L D X X D k k icic U e U X = − − + = + − − + ∇ = −           , (2) 1 1 1 2 2 1 1 1 12 2 2 2 2 2 1 1, /2 1/2, 1/2 1/2 /2 , /2 1/2, 1/2 1/2 /2 / d nmnm k k icX L D X X Dic X L L L D X X D U e U X= − − + = + + − − + ∇ =           , (3) 1 1 2 1 1 12 1 1 12 2 2 2 2 2 0 , /2; , /2 / d nmnm k k icic X L X D L L X L L L X D U e U X = + + + = ∇ = −       , (4) 1 1 2 1 1 12 1 1 12 2 2 2 2 2 0 , 1/2 /2; , 1/2 /2 / d nmnm k k icic X L X D L L X L L L X D U e U X =− + + + + =− + ∇ =       . As for the discrete analogs of conditions (6) (i.e., 0 0k iU = = , 0 0kP = = ), they give one the possi- bility to compute the appropriate terms in (9) and (10) at the initial time instant in the compu- tational domain, viz. ( ) 0 0j k nmF = = , ( ) 0 0j nm k ic U =∇ =  , 0( / ) 0 nm k i CP X =∂ ∂ = . A method of solution to Eqs. (9) and (10). The system of equations (9), (10) is solved numerically. In making this, one comes across the two significant problems. The first of them is connected with a nonlinearity of Eq. (9), whereas the second one is due to the absence of an equa- tion for the pressure which is available in the right part of (9). In order to solve the first problem, the flow ( )j k nmF is modified in the appropriate way. More specifically, the velocity components in it are initially replaced by their values found at the pre vious time step. After that, the components are replaced by their known previous appro- xima tions. These replacements allow one to proceed from solving the coupled systems of non- linear algebraic equations to the corresponding uncoupled linear ones. The second problem is solved via introducing the pressure in Eq. (10) and the subsequent agreeing of the velocity and the pressure with each other, when making the noted modification of the flow ( )j k nmF . The velocity and pressure values, which are obtained in making this, are cor- rected at each step by performing the appropriate operations. Let us demonstrate the above- said in more details. If one formally solves (9) with respect to nm k icU , one obtains the equation ( ) ( ) 4 ( ) 0 1 1/ V , ( / ) . j nm nm nm nm nm nm k j nm ji nmck k p jic ic ic ic k i C P n S U A A A P X = ⎧ ⎪⎪= + − ⎨ ⎪ ∂ ∂⎪⎩ ∑ (11) 55ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2022. № 1 A numerical technique to solve a problem of the fluid motion in a straight plane rigid duct.... Here 0 nmicA is a rational function whose numerator contains the known values 1 nm k icU − and 2 nm k icU − . Its denominator involves ( )j k nmF . The term nm k icA also is a rational function whose denominator only differs from that of the function 0 nmicA in the multiplier V /nm TΔ . Its numerator has the unknown quantities j k icU and ( ) j j k k nm icF U . As for the fractional multiplier nm p icA , its numerator only consists of the time step TΔ , whereas the denominator coincides with that of the func- tion 0 nmicA . From relation (11), one can obtain an equation for ( )j nm k ic U . That equation, after substituting into the expression for ( )j k nmF and then the obtained relation into (10), yields an equation for the pressure, viz. ( ) ( ) ( )( ) 4 4 ( ) 0 ( ) 1 1 ( / ) ( )j j jj nm nm nmnm p k j k j i ji nm ji nmC ic icic j j A P X n S A A n S = = ∂ ∂ = +∑ ∑ . (12) Then we begin to solve (11), (12) with finding the first approximations of the velocities * nm k icU . For this purpose, the unknown quantities ( )j nm k c P in (11) are replaced with the known ones ( ) 1 j nm k c P − , and the functions ... nmicA are modified by replacing the unknown velocities in the flow ( )j k nmF with their known values 1 nm k icU − . This results in the following system of linear algebraic equations for * nm k icU : ( ) 4 * 0 1 ( ) 1 ( / V ) jnm nm nm nm nm k l kl pl k j ic ic ic nm ji nmic c j U A A A P n S− = = + − ∑ (13) in which ... nm l icA are the modified functions ... nmicA . Once the quantities * nm k icU are found from (13) (the method of solution of this system is described below), they are further used to obtain the corresponding values of the operators ( ) ... j nmic A , which are then substituted into (12). This yields the system of linear algebraic equa- tions for the first approximation of the pressure, viz. ( ) ( ) ( )( ) 4 4 * * ( ) 0* * ( ) 1 1 ( / ) ( )j j jj nm nm nmnm p k j k j i ji nm ji nmC ic icic j j A P X n S A A n S = = ∂ ∂ = +∑ ∑ (14) in which ( ) ... j nmic A denote the values of the operators ( ) ... j nmic A found with the use of * nm k icU . Further, one applies a procedure which is similar to the just described one. More speci- fically, the first approximations of the pressure, ( ) * j nm k c P , found from (14) are substituted into (11) in stead of ( )j nm k c P . Also, in the functions ... nmicA in (11), the flow ( )j k nmF is modified by replacing the unknown velocities in it with their first approximations obtained from (13). This results in the systems of linear algebraic equations for the second approximations (or the first correc- tions) of the velocities ** nm k icU , viz. ( ) 4 ** 0 * * * * ( ) 1 ( / V ) jnm nm nm nm nm k l kl pl k j ic ic ic nm ji nmic c j U A A A P n S = = + − ∑ (15) 56 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2022. № 1 A.O. Borysyuk (here ... * nm l icA are the functions ... nmicA in which the just noted flow modification has been performed). After that, the second approximations of the velocities, obtained from (15), are used to obtain the values ** ( ) ... j nmic A of the operators ( ) ... j nmic A . The subsequent substitution of these values into (12) instead of ( ) ... j nmic A allows one to write a system of equations for the second approximation (or the first correction) of the pressure, ( ) ** j nm k c P , which is similar to (14) viz. ( ) ( ) ( )( ) 4 4 ** ** ( ) 0** ** ( ) 1 1 ( / ) ( )j j jj nm nm nmnm p k j k j i ji nm ji nmC ic icic j j A P X n S A A n S = = ∂ ∂ = +∑ ∑ . (16) If the accuracy of the second approximations of the velocities and the pressure is not satisfac- tory, then the just-described procedure must be carried out until the accuracy becomes as desired. Solution of Eqs. (13)-(16). The systems of linear algebraic equations (SLAEs) (13)-(16) can be rewritten in the generalized form, with the unknown quantities nm k cξ and i k cξ 4 1 nm nm i i nm k k k k k c c c c c i a a b = ξ + ξ =∑ . (17) Such systems are solved either by direct or iterative methods. Usually, the direct methods are applied to small systems of equations and give good results. However, when one deals with big SLAEs (especially with systems whose matrices are rarified), the direct methods need a huge amount of time to obtain their solutions. Therefore, their application is unreasonable here. The iterative methods, when applied to big SLAEs, need much less computational memory and time, save the rarefaction degree of their matrices (when the matrices are rarified) and give sa- tisfactory results. Proceed from the just-said, as well as from the dimension and the rarefaction degree of the matrix of system (17), an iterative method is chosen in this paper to solve the system. Within its framework, an initial approximation of the solution is chosen initially, which is then improved by making iterations until its accuracy reaches the desired value. Herewith, the attention is paid to the following two features. The first of them concerns with the necessity of providing do- mi nation of the diagonal terms in the matrix of system (17). In this study, it is realized by ap- plying the deferred correction implementation method [5] to the convective term. In accordance with this method, the part of the convective term, which corresponds to the scheme for ( ) 1 jf  (it is given before (9)), is inserted into the matrix, whereas its remainder is placed into the right part of SLAE (17). The second feature is related to a desire to have the as minimal as possible number of itera- tions. Here, it is made by the use of the method of conjugate gradients [5]. This method allows one to solve a SLAE via the iterations’ whose number does not exceed the number of its unknown values. Herewith, if a successful choice of the initial approximation is made, the number of ite- rations sharply decreases. Also, the preconditioning results in a significant reduction of the num- ber of iterations. For this purpose, the solvers ICCG and Bi-CGSTAB [5] are used. Conclusions 1. A second-order numerical technique has been developed to study the steady laminar fluid motion in a straight flat hard-walled duct with two axisymmetric rectangular constrictions. 57ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2022. № 1 A numerical technique to solve a problem of the fluid motion in a straight plane rigid duct.... 2. In this technique, the governing relations are solved via deriving their integral analogs, performing a discretization of these analogs, simplifying the obtained (after making the discre- ti zation) coupled nonlinear algebraic equations, and the final solution of the resulting (after mak- ing the simplification) uncoupled linear ones. 3. The discretization consists of the spatial and temporal parts. The first of them is perfor- med with the use of the TVD-scheme and the two-point scheme of discretization of the spatial derivatives, whereas the second one is made on the basis of the implicit three-point asymmetric backward differencing scheme. 4. The above-noted uncoupled linear algebraic equations are solved by an appropriate ite- rative method, which uses the deferred correction implementation technique and the technique of conjugate gradients, as well as the solvers ICCG and Bi-CGSTAB. REFERENCES 1. Borysyuk, A. O. (2019). Flow modelling in a straight rigid-walled duct with two rectangular axisymmetric narrowings. Part 1. A theory. Bulletin of V.N. Karazin Kharkiv National University, series “Mathematical Modeling. Information Technology. Automated Control Systems”, 44, pp. 4-15. https://doi.org/10.26565/2304-6201-2019-44-01 2. Borysyuk, A. O. & Borysyuk, Ya. A. (2017). Wall pressure fluctuations behind a pipe narrowing of various shapes. Science-Based Technologies, 32, No. 2, pp. 162-170. https://doi.org/10.18372/2310-5461.34.11615 3. Brujatckij, E. V., Kostin, A. G. & Nikiforovich, E. V. (2011). Numerical investigation of the velocity and pres- sure fields in a flat channel having a square-shape obstacle on the wall. Appl. Hydromech., 13, No. 3, pp. 33-47 (in Russian). 4. Young, D. F. (1979). Fluid mechanics of arterial stenosis. J. Biomech. Eng., 101, No. 3, pp. 157-175. https:// doi.org/10.1115/1.3426241 5. Ferziger, J. H. & Peri´c, M. (2002). Computational methods for fluid dynamics, 3rd ed. Berlin: Springer. Received 22.11.2021 А. О. Борисюк, https://orcid.org/0000-0002-3878-3915 Інститут гідромеханіки НАН України, Київ E-mail: aobor@ukr.net ЧИСЕЛЬНИЙ МЕТОД РОЗВ’ЯЗУВАННЯ ЗАДАЧІ ПРО РУХ РІДИНИ У ПРЯМОМУ ПЛОСКОМУ ЖОРСТКОМУ КАНАЛІ З ДВОМА ОСЕСИМЕТРИЧНИМИ ПРЯМОКУТНИМИ ЗВУЖЕННЯМИ Розроблено чисельний метод розв’язування задачі про стаціонарний ламінарний рух рідини у прямому плоскому жорсткому каналі з двома осесиметричними прямокутними звуженнями. Цей метод має другий порядок точності. У ньому співвідношення, що описують зазначений рух, розв’язуються шляхом одержан- ня їхніх інтегральних аналогів, дискретизації цих аналогів, зведення зв’язаних нелінійних алгебраїчних рівнянь (одержаних внаслідок дискретизації) до відповідних незалежних лінійних і подальшого розв’язування останніх. Зазначена дискретизація складається із просторової та часової частин. Перша з них виконується на основі використання TVD-схеми, а також двоточкової схеми дискретизації просто- рових похідних. При проведенні ж другої частини дискретизації застосовується неявна триточкова не- симетрична схема з різницями назад. Що стосується методу розв’язування вказаних незалежних ліній- них рівнянь, то це — відповідний ітераційний метод, який використовує методи відкладеної корекції та спряжених градієнтів, а також солвери ICCG та Bi-CGSTAB. Ключові слова: рух рідини, плоский канал, прямокутне звуження, метод.