Structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (IV) synthesized in aqueous solution

Bis(acetylacetonato)dichlorotin(IV) is synthesized from the aqueous solutions of tin(IV) chloride and acetylacetone followed by vacuum drying at room temperature. DTA/TGA, FTIR, UV-VIS, X-ray powder and single crystal, mass spectra and elemental analysis are performed to characterize the product. X-...

Full description

Saved in:
Bibliographic Details
Published in:Украинский химический журнал
Date:2010
Main Authors: Ulug, B., Turkdemir, H.M., Ulug, A., Buyukgungor, O., Yucel, M.B., Smyntyna, V.A., Grinevich, V.S., Filevskaya, L.N.
Format: Article
Language:English
Published: Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАН України 2010
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/186054
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (IV) synthesized in aqueous solution / B. Ulug, H.M. Turkdemir, A. Ulug, O. Buyukgungor, M.B. Yucel, V.A. Smyntyna, V.S. Grinevich, L.N. Filevskaya // Украинский химический журнал. — 2010. — Т. 76, № 7. — С. 12-17. — Бібліогр.: 36 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-186054
record_format dspace
spelling Ulug, B.
Turkdemir, H.M.
Ulug, A.
Buyukgungor, O.
Yucel, M.B.
Smyntyna, V.A.
Grinevich, V.S.
Filevskaya, L.N.
2022-11-02T16:47:12Z
2022-11-02T16:47:12Z
2010
Structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (IV) synthesized in aqueous solution / B. Ulug, H.M. Turkdemir, A. Ulug, O. Buyukgungor, M.B. Yucel, V.A. Smyntyna, V.S. Grinevich, L.N. Filevskaya // Украинский химический журнал. — 2010. — Т. 76, № 7. — С. 12-17. — Бібліогр.: 36 назв. — англ.
0041–6045
https://nasplib.isofts.kiev.ua/handle/123456789/186054
54.03
Bis(acetylacetonato)dichlorotin(IV) is synthesized from the aqueous solutions of tin(IV) chloride and acetylacetone followed by vacuum drying at room temperature. DTA/TGA, FTIR, UV-VIS, X-ray powder and single crystal, mass spectra and elemental analysis are performed to characterize the product. X-ray powder diffraction suggests that the sample may contain some impurities such as SnO, SnO₂ and Sn₂О₃ while the mass spectra indicates the existence of Sn(acac)₄, which is arguable due to the steric effect. Single crystal investigation reveals that the product synthesized in aqueous solution is Sn(acac)₂Cl₂, crystallized in monoclinic system in space group C2/c with unit cell constants a=13.983(2), b=7.8928(8), c=13.7889(19) Å and β =107.601(11)°, whose volume is 1.43 % smaller than the one synthesized in dry toluene.
Дихлордиацетилацетонат олова (IV) синтезирован в водном растворе хлорида олова (IV) и ацетилацетона с последующей сушкой в вакууме при комнатной температуре. Свойства синтезированного продукта исследованы методами DTA/TGA, FTIR, UV-VIS, рентгеновской дифракции, масс-спектроскопии и элементного анализа. Согласно результатам рентгеновской дифракции порошков, образец может содержать немного примесей, таких как SnO, SnO₂ и Sn₂О₃, в то же время массовые спектры указывают на существование Sn(acac)₄, что является спорным из-за стерического эффекта. Рентгенографические исследования отдельных кристаллов показывают, что продуктом, синтезированным в водном растворе, является Sn(acac)₂Cl₂, кристаллизованный в моноклинной системе в пространственной группе C2/c с постоянными решетки a=13.983(2), b=7.8928(8), c=13.7889(19) Å , β =107.601(11)° и объемом на 1.43 % меньшим, чем объем вещества, синтезированного в сухом толуоле.
Діхлордіацетилацетонат олова (ІV) синтезований у водному розчині хлориду олова (ІV) і ацетилацетона з наступним сушінням у вакуумі при кімнатній температурі. Властивості синтезованого продукту досліджені методами DTA/TGA, FTІ, UV-VІS, рентгенівської дифракції, мас-спектроскопії та елементного аналізу. Згідно з результатами рентгенівської дифракції порошків зразок може містити небагато домішок, таких як SnO, SnO₂ і Sn₂О₃, у той же час масові спектри вказують на існування Sn(acac)₄, що є суперечним внаслідок стеричного ефекту. Рентгенографічні дослідження окремих кристалів показують, що продуктом, синтезованим у водному розчині, є Sn(acac)₂Cl₂, кристалізований у моноклінній системі в просторовій групі C2/c із сталими гратки a=13.983(2), b=7.8928(8), c=13.7889(19) Å і β =107.601(11)° та об’ємом, на 1.43 % меншим за об’єм речовини, синтезованої в сухому толуолі.
The authors gratefully acknowledge the financial support of The Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant N 107T277 and the support of Ministry of Ukraine for Education and Science under the Grant N M/349-2008. BU, AU and BMY also acknowledge the support of Akdeniz University, Turkey. Authors specially thank to prof. Dr. H. Ibrahim Adiguzel for collecting the powder XRD data and Ismail Kabacelik for taking the FTIR and UV-VIS spectra. Associate prof. S. Savin is also gratefully acknowledged for his valuable assistance during the sample preparation.
en
Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАН України
Украинский химический журнал
Неорганическая и физическая химия
Structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (IV) synthesized in aqueous solution
Структурные, спектроскопические и термические исследования дихлордиацетилацетоната олова (IV), синтезированного в водном растворе
Структурні, спектроскопічні й термічні дослідження діхлордіацетилацетонату олова (IV), синтезованого у водному розчині
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (IV) synthesized in aqueous solution
spellingShingle Structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (IV) synthesized in aqueous solution
Ulug, B.
Turkdemir, H.M.
Ulug, A.
Buyukgungor, O.
Yucel, M.B.
Smyntyna, V.A.
Grinevich, V.S.
Filevskaya, L.N.
Неорганическая и физическая химия
title_short Structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (IV) synthesized in aqueous solution
title_full Structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (IV) synthesized in aqueous solution
title_fullStr Structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (IV) synthesized in aqueous solution
title_full_unstemmed Structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (IV) synthesized in aqueous solution
title_sort structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (iv) synthesized in aqueous solution
author Ulug, B.
Turkdemir, H.M.
Ulug, A.
Buyukgungor, O.
Yucel, M.B.
Smyntyna, V.A.
Grinevich, V.S.
Filevskaya, L.N.
author_facet Ulug, B.
Turkdemir, H.M.
Ulug, A.
Buyukgungor, O.
Yucel, M.B.
Smyntyna, V.A.
Grinevich, V.S.
Filevskaya, L.N.
topic Неорганическая и физическая химия
topic_facet Неорганическая и физическая химия
publishDate 2010
language English
container_title Украинский химический журнал
publisher Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАН України
format Article
title_alt Структурные, спектроскопические и термические исследования дихлордиацетилацетоната олова (IV), синтезированного в водном растворе
Структурні, спектроскопічні й термічні дослідження діхлордіацетилацетонату олова (IV), синтезованого у водному розчині
description Bis(acetylacetonato)dichlorotin(IV) is synthesized from the aqueous solutions of tin(IV) chloride and acetylacetone followed by vacuum drying at room temperature. DTA/TGA, FTIR, UV-VIS, X-ray powder and single crystal, mass spectra and elemental analysis are performed to characterize the product. X-ray powder diffraction suggests that the sample may contain some impurities such as SnO, SnO₂ and Sn₂О₃ while the mass spectra indicates the existence of Sn(acac)₄, which is arguable due to the steric effect. Single crystal investigation reveals that the product synthesized in aqueous solution is Sn(acac)₂Cl₂, crystallized in monoclinic system in space group C2/c with unit cell constants a=13.983(2), b=7.8928(8), c=13.7889(19) Å and β =107.601(11)°, whose volume is 1.43 % smaller than the one synthesized in dry toluene. Дихлордиацетилацетонат олова (IV) синтезирован в водном растворе хлорида олова (IV) и ацетилацетона с последующей сушкой в вакууме при комнатной температуре. Свойства синтезированного продукта исследованы методами DTA/TGA, FTIR, UV-VIS, рентгеновской дифракции, масс-спектроскопии и элементного анализа. Согласно результатам рентгеновской дифракции порошков, образец может содержать немного примесей, таких как SnO, SnO₂ и Sn₂О₃, в то же время массовые спектры указывают на существование Sn(acac)₄, что является спорным из-за стерического эффекта. Рентгенографические исследования отдельных кристаллов показывают, что продуктом, синтезированным в водном растворе, является Sn(acac)₂Cl₂, кристаллизованный в моноклинной системе в пространственной группе C2/c с постоянными решетки a=13.983(2), b=7.8928(8), c=13.7889(19) Å , β =107.601(11)° и объемом на 1.43 % меньшим, чем объем вещества, синтезированного в сухом толуоле. Діхлордіацетилацетонат олова (ІV) синтезований у водному розчині хлориду олова (ІV) і ацетилацетона з наступним сушінням у вакуумі при кімнатній температурі. Властивості синтезованого продукту досліджені методами DTA/TGA, FTІ, UV-VІS, рентгенівської дифракції, мас-спектроскопії та елементного аналізу. Згідно з результатами рентгенівської дифракції порошків зразок може містити небагато домішок, таких як SnO, SnO₂ і Sn₂О₃, у той же час масові спектри вказують на існування Sn(acac)₄, що є суперечним внаслідок стеричного ефекту. Рентгенографічні дослідження окремих кристалів показують, що продуктом, синтезованим у водному розчині, є Sn(acac)₂Cl₂, кристалізований у моноклінній системі в просторовій групі C2/c із сталими гратки a=13.983(2), b=7.8928(8), c=13.7889(19) Å і β =107.601(11)° та об’ємом, на 1.43 % меншим за об’єм речовини, синтезованої в сухому толуолі.
issn 0041–6045
url https://nasplib.isofts.kiev.ua/handle/123456789/186054
citation_txt Structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (IV) synthesized in aqueous solution / B. Ulug, H.M. Turkdemir, A. Ulug, O. Buyukgungor, M.B. Yucel, V.A. Smyntyna, V.S. Grinevich, L.N. Filevskaya // Украинский химический журнал. — 2010. — Т. 76, № 7. — С. 12-17. — Бібліогр.: 36 назв. — англ.
work_keys_str_mv AT ulugb structurespectroscopicandthermalcharacterizationofbisacetylacetonatodichlorotinivsynthesizedinaqueoussolution
AT turkdemirhm structurespectroscopicandthermalcharacterizationofbisacetylacetonatodichlorotinivsynthesizedinaqueoussolution
AT uluga structurespectroscopicandthermalcharacterizationofbisacetylacetonatodichlorotinivsynthesizedinaqueoussolution
AT buyukgungoro structurespectroscopicandthermalcharacterizationofbisacetylacetonatodichlorotinivsynthesizedinaqueoussolution
AT yucelmb structurespectroscopicandthermalcharacterizationofbisacetylacetonatodichlorotinivsynthesizedinaqueoussolution
AT smyntynava structurespectroscopicandthermalcharacterizationofbisacetylacetonatodichlorotinivsynthesizedinaqueoussolution
AT grinevichvs structurespectroscopicandthermalcharacterizationofbisacetylacetonatodichlorotinivsynthesizedinaqueoussolution
AT filevskayaln structurespectroscopicandthermalcharacterizationofbisacetylacetonatodichlorotinivsynthesizedinaqueoussolution
AT ulugb strukturnyespektroskopičeskieitermičeskieissledovaniâdihlordiacetilacetonataolovaivsintezirovannogovvodnomrastvore
AT turkdemirhm strukturnyespektroskopičeskieitermičeskieissledovaniâdihlordiacetilacetonataolovaivsintezirovannogovvodnomrastvore
AT uluga strukturnyespektroskopičeskieitermičeskieissledovaniâdihlordiacetilacetonataolovaivsintezirovannogovvodnomrastvore
AT buyukgungoro strukturnyespektroskopičeskieitermičeskieissledovaniâdihlordiacetilacetonataolovaivsintezirovannogovvodnomrastvore
AT yucelmb strukturnyespektroskopičeskieitermičeskieissledovaniâdihlordiacetilacetonataolovaivsintezirovannogovvodnomrastvore
AT smyntynava strukturnyespektroskopičeskieitermičeskieissledovaniâdihlordiacetilacetonataolovaivsintezirovannogovvodnomrastvore
AT grinevichvs strukturnyespektroskopičeskieitermičeskieissledovaniâdihlordiacetilacetonataolovaivsintezirovannogovvodnomrastvore
AT filevskayaln strukturnyespektroskopičeskieitermičeskieissledovaniâdihlordiacetilacetonataolovaivsintezirovannogovvodnomrastvore
AT ulugb strukturníspektroskopíčníitermíčnídoslídžennâdíhlordíacetilacetonatuolovaivsintezovanogouvodnomurozčiní
AT turkdemirhm strukturníspektroskopíčníitermíčnídoslídžennâdíhlordíacetilacetonatuolovaivsintezovanogouvodnomurozčiní
AT uluga strukturníspektroskopíčníitermíčnídoslídžennâdíhlordíacetilacetonatuolovaivsintezovanogouvodnomurozčiní
AT buyukgungoro strukturníspektroskopíčníitermíčnídoslídžennâdíhlordíacetilacetonatuolovaivsintezovanogouvodnomurozčiní
AT yucelmb strukturníspektroskopíčníitermíčnídoslídžennâdíhlordíacetilacetonatuolovaivsintezovanogouvodnomurozčiní
AT smyntynava strukturníspektroskopíčníitermíčnídoslídžennâdíhlordíacetilacetonatuolovaivsintezovanogouvodnomurozčiní
AT grinevichvs strukturníspektroskopíčníitermíčnídoslídžennâdíhlordíacetilacetonatuolovaivsintezovanogouvodnomurozčiní
AT filevskayaln strukturníspektroskopíčníitermíčnídoslídžennâdíhlordíacetilacetonatuolovaivsintezovanogouvodnomurozčiní
first_indexed 2025-11-24T19:08:32Z
last_indexed 2025-11-24T19:08:32Z
_version_ 1850493426790825984
fulltext UDC 54.03 B. Ulug, H.M. Turkdemir, A. Ulug, O. Buyukgungor, M.B. Yucel, V.A. Smyntyna, V.S. Grinevich, L.N. Filevskaya STRUCTURE, SPECTROSCOPIC AND THERMAL CHARACTERIZATION OF BIS(ACETYLACETONATO)DICHLOROTIN(IV) SYNTHESIZED IN AQUEOUS SOLUTION Bis(acetylacetonato)dichlorotin(IV) is synthesized from the aqueous solutions of tin(IV) chloride and acetylace- tone followed by vacuum drying at room temperature. DTA/TGA, FTIR, UV-VIS, X-ray powder and single crystal, mass spectra and elemental analysis are performed to characterize the product. X-ray powder diffraction suggests that the sample may contain some impurities such as SnO, SnO2 and Sn2O3 while the mass spectra indicates the existence of Sn(acac)4, which is arguable due to the steric effect. Single crystal investigation reveals that the product synthesized in aqueous solution is Sn(acac)2Cl2, crystallized in monoclinic system in space group C2/c with unit cell constants a=13.983(2), b=7.8928(8), c=13.7889(19) Ao and β=107.601(11)o, whose volume is 1.43 % smaller than the one synthesized in dry toluene. INTRODUCTION . High optical transmittance to- gether with high conductivity makes tin oxide a ma- terial useful for many promising technological appli- cations such as gas sensors [1—6], photo-con- ducting devices [7], spectrally selective reflectors and dye-based solar cells [8—10], ultrafiltration membra- ne [11], transparent conductive glasses [12] and mo- lecular shape recognition [13]. Due to its unique properties, tin oxide has been gaining even increasing attention both on methods of preparation [14—24] and its electrical and optical properties [15, 25]. Several methods for the preparation of tin oxide films and nanoparticles have been previously repor- ted such as sonochemical [15], modified successive ionic layer adsorption and reaction [16], chemical va- por deposition [17], magnetron sputtering [18], py- rolysis of thin organometallic compounds [19, 20], evaporation of tin in oxygen atmosphere [19, 20], spray pyrolysis [21], sol–gel [14, 22], solution phase synthesis [23], molecular-beam deposition [24]. The synthesis of tin oxide nanoparticles with high crystal- linity, homogeneous composition, and well-defined particle morphologies with narrow size distributions is of particular technological interest since grain size and morphology are extremely important on the elec- trical and optical properties as well as the gas sensiti- vity of tin oxides [6, 26—28]. Some of the methods used in producing tin oxide films are too expensive to employ in mass production while some suffer from broad particle size distribution which is extre- mely difficult to control. In these respect sol–gel me- thods gain importance since the particle size as well as the structure of tin oxide can be controlled in many ways such as changing the concentration of precursor solution, heat treatment conditions. Sol–gel methods are usually based on the de- composition of a complex of Sn(IV) and acetylaceto- ne, H(acac), namely Sn(acac)2Cl2, produced by diffe- rent methods [29—32], which involve some tedious and time consuming processes since Sn(acac)2Cl2 is prepared in solvents such as chloroform [31] and dry toluene [32]. We report here a new simple method for the synthesis of Sn(acac)2Cl2 in aqueous solution and fully characterize the reaction product and its crystal structure using differential thermal analy- sis/thermo gravimetric analysis (DTA/TGA), elemen- tal analysis, ion chromatography, Fourier transform infrared (FTIR), Ultraviolet-Visible (UVVIS), 1H and 13C Nuclear Magnetic Resonance (NMR), XRay Diffraction (XRD) and Mass Spectrum (MS). EXPERIM ENTAL PART . Synthesis. 5 mL of 25 % water solution of NH4OH is added into a freshly pre- pared solution of 0.12 mol (14 mL) Tin(IV) chloride dissolved in 50 mL icecold double distilled water. The solution is then poured into a solution of 0.5 mol (50 mL) acetylacetone dissolved in 250 mL double distilled water held at 40 oC. Although thick and white sediment immediately appears, mixture is kept mixing for two hours. 600 mL distilled water is added in before it is allowed to settle down for 15 minutes. Sediment is then filtered and washed by double-distil- led water subsequent to drying at 10–2 mbar. Wa- shing and drying processes are repeated once more with benzene to remove some possible organic resi- dues. The product is crystallized by slow evaporation of acetone in which it is dissolved in at room tempe- rature. All reagents are of AR grade. Characterization. FTIR absorbance spectrum of © B. Ulug, H.M. Turkdemir, A. Ulug, O. Buyukgungor, M.B. Yucel, V.A. Smyntyna, V.S. Grinevich, L.N. Filevskaya, 2010 Неорганическая и физическая химия 12 ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2010. Т. 76, № 7 the samples is measured by Bruker–Tensor 27 spectrometer with 1.0 cm–1 interval with a resolution of 2 cm–1. 20 scans are performed in the range 400 —4000 cm–1. Solid samples are pelletized with dri- ed KBr. UV-VIS absorbance spectra of the samples dissolved in acetone are recorded at room tempera- ture in the wavelength range 300—1000 nm using Varian-Cary 100 Bio UV-VIS spectrophotometer. Simultaneous thermogravimetry and differential thermal analysis are carried out with a Perkin–Elmer Exstar 6000 analyzer in air and nitrogen atmosphe- res with a heating rate of 10 oC/min. Carbon and hydrogen content are determined using Euro EA 2300 elemental analyzer whereas Cl and Sn analysis are performed after dissolving the product in HNO3 using Waters 432 ion chromatography and Perkin Elmer ICP-OES Optima 2100 DV, respectively. 1H and 13C NMR spectra are recorded on a Varian AS 400 spectrometer operating at 400 MHz. Powder XRD data is collected on Rigaku–Rad B-DMAXII diffractometer with graphite-monochro- mated CuKα radiation (λ=1.54056 Ao ) from 2 to 80o (2θ) in steps of 0.01o whereas single crystal data are collected on a graphite-monochromated Stoe IPDS- II diffractometer using MoKα-radiation (λ=0.71073 Ao ). Powder and crystal data are collected at room temperature. Single crystal data collection and cell refinement are performed using X-AREA [33] while data reduction is accomplished using X-RED32 [33]. SHELXL-97 [34] program system is used for solving and refining the crystal structure. Mass spectrum is recorded using Agilent 6300 Series LC/MS system. RESULTS AND DISCUSSION. Thermal decomposition of the pro- duct (fig. 1) consists of several sta- ges. Weight loss observed between the room temperature and 192.0 oC which is about 4.0 % is like- ly due to the evaporation of adsor- bed and hydrated water. A well de- fined endothermic peak appearing at 204.0 oC is associated with the melting point. TGA and DTA da- ta (fig. 1), reveals an oxygen-rela- ted structuring in temperature ran- ge 192.0—308.5 oC, one at 277.4 oC and the other at 286.6 oC. Slight increase in the slope of TGA data in air at 277.4 oC sug- gests that this might be related to the reaction of thermally decomposed fragments either with oxygen and/or hydrogen before they leave the structure. This is supported by the lack of steepness in DTA curve obtained in nitrogen atmo- sphere at the same temperature range. The strong exothermal peak appeared between 620 and 650 oC in the DTA curve taken in air is not observed in the curve taken in nitrogen. Exothermal peak observed in air at around 650 oC corresponds to weight loss of 1.5 % and may due to combustion of organic resi- dues be formed by the decomposition of acetylaceto- nate. Further increase in temperature does not result in any more weight loss. Residual weight at 308.5 oC in fig. 1 is about 28 % and can be associated with SnO2 content of the product. C, H, Sn and Cl contents of the product, which are 29.28, 3.41, 30.90 ± 1.1 % and 16.50 ± 0.60 %, res- pectively, are comparable with the elemental ra- tios calculated for Sn(acac)2Cl2 (30.97, 3.64, 30.61 and 18.28 %, respectively) and for Sn(acac)2Cl2⋅2H2O (28.34, 4.28, 28.00 and 16.73 %, respectively). Al- though C, H and Sn content of the product are quite in agreement with Sn(acac)2Cl2, measured Cl content addresses Sn(acac)2Cl2⋅2H2O. TGA result given in fig. 1 from which a residual weight of 28 % is calcu- lated seems to support it too. However, considering the sublimation of Sn that may take place during the heating, thermal analysis can be expected to present lower Sn content than what it should be. It can thus be argued that the results of thermal and elemental analysis are consistent and suggest the formula Sn(acac)2Cl2. Fig. 1. DTA (1), TGA (2) and DTG (3) results of the product. Solid and broken lines represent the data taken in nitrogen and air, respectively. ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2010. Т . 76, № 7 13 Methyl group of acetylacetonato (acac) exhibits equal intensity singlet at 2.122 and 2.214 ppm due to CH3 groups while CH protons gives singlet at 5.709 ppm in the 1H NMR spectrum of the sample. 13C NMR resonances located at 27.973 and 102.655 ppm correspond to CH3 and CH groups of acac, respecti- vely, whereas the signals due to C=O and C–O gro- ups appear at 195.856 and 196.421 ppm, respectively. As one may expect the amplitude ratio of the signals arising from CH and CH3 groups is about 1/3 in 1H NMR and signals from CH, C—O, C=O and CH3 groups are about 1/2 in 13C NMR. FTIR absorbance spectra of the product exhi- bits strong bands in the range 400—1600 cm–1 and some weak bands placed on a small broad band lo- cated between 2400 and 3600 cm–1 (fig. 2). None of the characteristic bands of benzene are observed on FTIR spectra of the sample indicates the effective removal of benzene. Vibrations extending from 2500 to 3600 cm–1 have related to the presence of hyd- rogen bond involved in O–H oscillators arising from SnOH groups and/or adsorbed water molecules [35]. Based on Density Functional Theory (DFT) some bands appearing between 3031 and 3108 cm–1 are however assig- ned to ν(CH)methyl and (CH)CH3 [36]. All but the vibration at 810 cm–1 match quite well with the IR active bands of Sn(acac)2Cl2 [36]. Vibrations between 415 and 590 cm–1 are assig- ned to the coupled modes of (SnO), (OSnCl), (OSnO) and (OSnCl/ OSnO) [30, 35, 36] while the strong vibrat ions appearing at 1540 and 1570 cm–1 were related to the enol form of acetylacetonate group bonded to tin [35, 36]. It can therefore be argued with confident that all (acac) groups are bonded to tin to form a complex and no free acetylacetonate exists in the product. UV-VIS spectrum of the sample reveals strong absorbance at 331.6 nm due to (acac) group and con- firms the FTIR results that acetylacetonate is bon- ded to tin. X-ray powder diffraction result (fig. 3), indicates that all peaks are due to Sn(acac)2Cl2 tho- ught some impurities which can be attributed to SnO, SnO2 and Sn2O3 are also present. Signals in the mass spectra of the product (fig. 4), are grouped at around 515.3, 417.0, 353.0, 314.3, 289.0 and 101.1 m/z in which the highest occurrence is at 353.0 m/z. 515.3 m/z at which the signal has the lowest occurrence (1/33th of the highest peak at 353.0 m/z) is consistent with Sn(acac)4. Signal at 416.1 m/z can be related to Sn(acac)3 e.g., one of four (acac) groups in Sn(acac)4 is fragmented. Signals at 353.0 m/z and 317.95 m/z correspond to the fragments of Неорганическая и физическая химия Fig. 3. Powder XRD pattern of the product. * — Sn(acac)2Cl2, • –— SnO, o — SnO2, • — Sn2O3, ? — unknown. F ig. 2. FTIR absorbance spectra of the product (1), acetylaceto- nate (2) and benzene (3). 14 ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2010. Т. 76, № 7 Sn(acac)2Cl2, namely Sn(acac)2Cl and Sn(acac)2 in which one and two chlorine atoms are removed, re- spectively. The signal at 289.0 m/z is consistent with Sn(acac) while the one at 101.1 m/z is related to H(acac). Mass spectra of the pro- duct is in line with powder XRD data that the product is essentially Sn(acac)2Cl2 but contains some tra- ces of Sn(acac)4. Single crystal investigation con- firms that the product is Sn(acac)2Cl2, crystallized in monoclinic system in space group C2/c with unit cell constants a=3.983(2), b=7.8929, c= =13.7889 (19) Ao and β=107.601 (11)o. Molecular structure of Sn(acac)2Cl2 is depicted in fig. 5 while the crystal data and the measured bond lengths and angles are summarized in tab- le 1 and table 2, respectively *. Unit cell parameters a, b and c given in table 1 differ 0.67 %, –0.34 % and –1.82 %, respectively, from that of the samples produced in dry toluene [32]. Consequence of this, the unit cell volume of our product is smaller by 1.43 % while the density is higher by 1.41 % compared to the one produced in dry toluene [32]. Although (acac)– in some cases binds to metals through the central carbon atom, C3 in fig. 5, molecular structure acqui- red indicates that it is bonded to tin atom through oxygen. Signals at 515.3 m/z and 416.1 m/z, which cor- respond to Sn(acac)4 and to Sn(acac)3, respectively, in fig. 4 suggest the presence of Sn(acac)4 and Sn(acac)3Cl in the product. Signal at 416.1 m/z could only be due to the fragments of Sn(acac)4 and/or Sn(acac)3Cl since Sn(acac)3 can not exist as a free standing compound. Such a possibility is not suppor- ted by thermal analysis since DTA reveals very sharp melting point at 204.0 oC (fig. 1). Although DTA ob- tained in air indicates some complexities around 300 oC, which could be related to the impurities such as those Sn(acac)4 and Sn(acac)3Cl, its wane in DTA taken in nitrogen atmosphere excludes such possibility. In this respect, FTIR and UV-VIS spect- ra are not so diagnostic though powder XRD sho- uld be more indicative. Library search of powder XRD indicates the existence of SnO, SnO2 and Sn2O3 impurities (fig. 3), despite the fact that the Fig. 4. Mass spectrum of the product. * CCDC 735456 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk , or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033. Fig. 5. Molecular structure of Sn(acac)2Cl2. ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2010. Т . 76, № 7 15 http://www.ccdc.cam.ac.uk/data_request/cif mailto:data_request@ccdc.cam.ac.uk sample is prepared at room temperature. Since XRD data of such compounds are not known no further comment is possible. It should also be noted that yield of Sn(acac)4 must be very low for the conditions deployed since it does not appear in significant amount despite the fact that the molar ratio of the constituents, namely M[SnCl4] to M[H(acac)], is kept 1/4 or lower. Mole- cular structure depicted in fig. 5 and the data given in table 2 suggest that attaching the third and forth (acac) units to Sn atom can not be so straightforward due to the steric effect. CONCLUSION. Bis(acetylacetonato)dichlorotin (IV) is synthesized from the aqueous solutions of tin (IV) chloride and acetylacetone followed by vacuum drying at room temperature. All the analysis performed are consistent and suggest that the pro- duct is essentially Sn(acac)2Cl2. Single crystal data reveals that Sn(C5H7O2)2Cl2 crystallized in mono- clinic system in space group C2/c with unit cell di- mensions a =13.983(2), b=7.8929, c=13.7889(19) Ao and β=107.601(11)o. The unit cell is found to be about 1.43 % smaller than the one synthesized in dry toluene. Mass spectra indicates the existence of Sn(acac)4 in the product whereas the molecular structure obtained makes it disputable due to the steric effect. The authors gratefully acknowledge the finan- cial support of The Scientific and Technological Re- search Council of Turkey (TUBITAK) under the Grant N 107T277 and the support of Ministry of Ukraine for Education and Science under the Grant N M/349-2008. BU, AU and BMY also acknowledge the support of Akdeniz University, Turkey. Authors specially thank to prof. Dr. H. Ibrahim Adiguzel for collecting the powder XRD data and Ismail Kabace- lik for taking the FTIR and UV-VIS spectra. Associate prof. S. Savin is also gratefully acknowledged for his valuable assistance during the sample preparation. РЕЗЮМЕ. Дихлордиацетилацетонат олова (IV) син- тезирован в водном растворе хлорида олова (IV) и аце- тилацетона с последующей сушкой в вакууме при комна- тной температуре. Свойства синтезированного продук- та исследованы методами DTA/TGA, FTIR, UV-VIS, рентгеновской дифракции, масс-спектроскопии и эле- ментного анализа. Согласно результатам рентгеновской дифракции порошков, образец может содержать немно- Неорганическая и физическая химия T a b l e 1 Crystal data and structure refinement parameters of bis- (acetylacetonato)dichlorotin (IV) Parameters Crystal data Empirical formula Sn(C5H7O2)2Cl2 Formula weight 387.80 Temperature, K 296 X-ray, Ao MoKα, 0.71073 Crystal system Monoclinic Space group C2/c Unit cell parameters: a, b, c, Ao 13.983(2), 7.8928(8), 13.7889(19) α, β, γ, o 90.00, 107.601(11), 90.00 Z 4 V , Ao 3 1450.5(3) D, g/cm3 1.776 Absorption coefficient, mm–1 2.16 № of reflection collected 3440 Theta range for data collection 3.00–26.50 Independent reflections 1474 Measurement Stoe IPDS-II Monochromator Plane graphite Structure determination SHELXL-97 Absorption correction Integration Stoe X-RED Final R indices [I > 2σ(I)] 0.0213 R[F2 > 2σ(F2)] 0.0231 wR(F2) 0.0583 Goodness-of-fit on F2 1.145 Peak and hole, Ao 3 0.297, –0.674 T a b l e 2 Some selected bond lengths (Ao ) and angles (o) of bis(ace- tylacetonato)dichlorotin (IV) Bond Bond length, Ao Bond Angle, o Sn(1)–O(1) 2.0733(17) O(1)–Sn(1)–O(1) i* 84.08(7) Sn(1)–O(2) 2.058(2) O(1)–Sn(1)–O(2) i 86.69(8) Sn(1)–Cl(1) 2.3543(9) O(2)–Sn(1)–O(2) i 172.22(6) O(1)–C(2) 1.280(3) O(1)–Sn(1)–Cl(1) 173.36(5) O(2)–C(4) 1.296(3) O(2)–Sn(1)–Cl(1) 93.74(6) C(1)–C(2) 1.491(4) Cl(1)–Sn(1)–Cl(1) i 97.00(3) C(2)–C(3) 1.381(4) C(2)–O(1)–Sn(1) 125.33(17) C(3)–C(4) 1.390(4) C(4)–O(2)–Sn(1) 124.70(17) C(4)–C(5) 1.490(5) * Symmetry code i : 1–x , y, 1 2 – z. 16 ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2010. Т. 76, № 7 го примесей, таких как SnO, SnO2 и Sn2O3, в то же вре- мя массовые спектры указывают на существование Sn(acac)4, что является спорным из-за стерического эф- фекта. Рентгенографические исследования отдельных кристаллов показывают, что продуктом, синтезиро- ванным в водном растворе, является Sn(acac)2Cl2, крис- таллизованный в моноклинной системе в пространствен- ной группе C2/c с постоянными решетки a=13.983(2), b=7.8928(8), c=13.7889(19) Ao , β=107.601(11)о и объемом на 1.43 % меньшим, чем объем вещества, синтезированного в сухом толуоле. РЕЗЮМЕ. Діхлордіацетилацетонат олова (ІV) син- тезований у водному розчині хлориду олова (ІV) і аце- тилацетона з наступним сушінням у вакуумі при кімна- тній температурі. Властивості синтезованого продукту досліджені методами DTA/TGA, F TІ, UV-VІS, рентге- нівської дифракції, мас-спектроскопії та елементного ана- лізу. Згідно з результатами рентгенівської дифракції по- рошків зразок може містити небагато домішок, таких як SnO, SnO2 і Sn2O3, у той же час масові спектри вказують на існування Sn(acac)4, що є суперечним внаслідок сте- ричного ефекту. Рентгенографічні дослідження окремих кристалів показують, що продуктом, синтезованим у вод- ному розчині, є Sn(acac)2Cl2, кристалізований у моноклін- ній системі в просторовій групі C2/c із сталими гратки a=13.983(2), b=7.8928(8), c=13.7889(19) Ao і β=107.601(11)о та об’ємом, на 1.43 % меншим за об’єм речовини, синте- зованої в сухому толуолі. 1. Stepanov A.G. // J. Organomet. Chem. -1989. -361. -P. 157—159. 2. Comini E., Faglia G., Pan Z . et al. // Appl. Phys. Lett. -2002. -81. -P. 1869—1871. 3. Song K.H., Park S .J. // J. Mater. Sci.: Mater. Electron. -1993. -4. -P. 249—253. 4. W ang X., Y ee S .S ., Carey W .P. // Sens. Actuators B. -1995. -24–25. -P. 454—457. 5. Varghese O.K., M alhotra L .K. // Ibid. -1998. -53. -P. 19—23. 6. Xu J., Tamaki N.N., Y amazoe N . // Ibid. -1991. -3. -P. 147—155. 7. Comini E., Guidi V ., M alagu C. et al. // J. Phys. Chem. B. -2004. -108. -P. 1882—1887. 8. Vuong D.D., Sakai G., Shimanoe K., Y amazoe N . // Sensors and Actuators B. -2004. -103. -P. 386—391. 9. Stergiopoulos T., Arabatzis I.M ., Cachet H., Falaras P. // J. Photochem. Photob. A: Chem. -2003. -155. -P. 163—170. 10. Ferrere S ., Z aban A., Gsegg B.A . // J. Phys. Chem. B. -1997. -101. -P. 4490—4493. 11. Santos L .R.B., Santilli C.V., Barbot A . et al. // J. Sol–Gel Sci. Technol. -2000. -19. -P. 621—625. 12. Tadanaga K., Owan T., M orinaga J. et al. // Ibid. -2000. -19. -P. 791—794. 13. Tanimura T ., Katada N., Niwa M . // Langmuir. -2000. -16. -P. 3858—3865. 14. Jarzebski Z .M ., M arton J.P. // J. Electrochem. Soc. -1976. -123, N 10. -333C—346C. 15. Z hu J., L u Z .H., Aruna S.T. et al. // Chem. Mater. -2000. -12. -P. 2557—2566. 16. Deshpande N.G., Vyas J.C., Sharma R . // Thin Solid Films. -2008. -516. -P. 8587—8593. 17. Lee S .W ., Kim Y .W ., Chen H . // Appl. Phys. Lett. -2001. -78. -P. 350—352. 18. M inami J., Nanto N., Tanata S . // Jpn. J. Appl. Phys. -1988. -27. -P. L287—L289. 19. Nayral C., Ely T.O., M aisonnat A. et al. // Adv. Mater. -1999. -11. -P. 61—63. 20. Leite E.R ., W eber I.T ., Longo E., Varela J.A . // Ibid. -2000. -12. -P. 965—968. 21. Shanthi S ., Subramanian C., Ramasamy P. // Cryt. Res. Technol. -1999. -34. -P. 1037—1046. 22. Hiratsuka S .R., Santilli V .C., Silva V .D., Pulcinelli H.S . // J. Non-Cryst. Solids. -1992. -147–148. -P. 67—73. 23. Cao Q., Gao Y ., Chen X. et al. // Chem. Lett. -2006. -35. -P. 178—179. 24. Gaiduk P.I., Hansen J.L ., Larsen A .N . // Appl. Phys. Lett. -2008. -92. -P. 193112(3). 25. Dutta K., De S .K. // J. Appl. Phys. -2007. -102. -P. 084110(7). 26. Rella R., Siciliano P., Capone S . et al. // Sensors and Actuators B. -1999. -58. -P. 283—288. 27. Chiorino A., Ghiotti G., Prinetto F. et al. // Ibid. -1999. -59. -P. 203—209. 28. Hooker S.A . // Proc. of the Nanoparticles 2002. -P. 1–7. 29. M organ G.T ., Drew H.D.K. // J. Chem. Soc. -1924. -15. -P. 372—381. 30. Ueeda R., Kawasaki Y ., Tanaka T., Okawara R . // J. Organomet. Chem. -1966. -5. -P. 194—197. 31. Dilthey W . // Ber. Deut. Chem. Ges. -1903. -36. -P. 923—930. 32. Shahzadi S ., Ali S ., Jin G.X. // J. Iranian Chem. Soc. -2006. -3, N 4. -P. 323—326. 33. X -AR EA and X-RED32. Stoe & Cie, Darmstadt, Germany, 2002. 34. Sheldrick G.M . // Acta Cryst. -2008. -A64. -P. 112—122. 35. M onredon S. de, Cellot A., Ribot F. et al. // J. Mater. Chem. -2002. -12. -P. 2396—2400. 36. Tellez C.A., Hollauer E., S ilva M .I.P. et al. // Spectro- chim. Acta. Pt A. -2001. -57. -P. 1149—1161. Akdeniz University, Antalya, Received 22.03.2010 Uludag University, Bursa, 19 Mayis University, Samsun, Turkey Odessa National I.I. Mechnikov University, Ukraine ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2010. Т . 76, № 7 17