Structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (IV) synthesized in aqueous solution
Bis(acetylacetonato)dichlorotin(IV) is synthesized from the aqueous solutions of tin(IV) chloride and acetylacetone followed by vacuum drying at room temperature. DTA/TGA, FTIR, UV-VIS, X-ray powder and single crystal, mass spectra and elemental analysis are performed to characterize the product. X-...
Saved in:
| Published in: | Украинский химический журнал |
|---|---|
| Date: | 2010 |
| Main Authors: | , , , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАН України
2010
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/186054 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (IV) synthesized in aqueous solution / B. Ulug, H.M. Turkdemir, A. Ulug, O. Buyukgungor, M.B. Yucel, V.A. Smyntyna, V.S. Grinevich, L.N. Filevskaya // Украинский химический журнал. — 2010. — Т. 76, № 7. — С. 12-17. — Бібліогр.: 36 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-186054 |
|---|---|
| record_format |
dspace |
| spelling |
Ulug, B. Turkdemir, H.M. Ulug, A. Buyukgungor, O. Yucel, M.B. Smyntyna, V.A. Grinevich, V.S. Filevskaya, L.N. 2022-11-02T16:47:12Z 2022-11-02T16:47:12Z 2010 Structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (IV) synthesized in aqueous solution / B. Ulug, H.M. Turkdemir, A. Ulug, O. Buyukgungor, M.B. Yucel, V.A. Smyntyna, V.S. Grinevich, L.N. Filevskaya // Украинский химический журнал. — 2010. — Т. 76, № 7. — С. 12-17. — Бібліогр.: 36 назв. — англ. 0041–6045 https://nasplib.isofts.kiev.ua/handle/123456789/186054 54.03 Bis(acetylacetonato)dichlorotin(IV) is synthesized from the aqueous solutions of tin(IV) chloride and acetylacetone followed by vacuum drying at room temperature. DTA/TGA, FTIR, UV-VIS, X-ray powder and single crystal, mass spectra and elemental analysis are performed to characterize the product. X-ray powder diffraction suggests that the sample may contain some impurities such as SnO, SnO₂ and Sn₂О₃ while the mass spectra indicates the existence of Sn(acac)₄, which is arguable due to the steric effect. Single crystal investigation reveals that the product synthesized in aqueous solution is Sn(acac)₂Cl₂, crystallized in monoclinic system in space group C2/c with unit cell constants a=13.983(2), b=7.8928(8), c=13.7889(19) Å and β =107.601(11)°, whose volume is 1.43 % smaller than the one synthesized in dry toluene. Дихлордиацетилацетонат олова (IV) синтезирован в водном растворе хлорида олова (IV) и ацетилацетона с последующей сушкой в вакууме при комнатной температуре. Свойства синтезированного продукта исследованы методами DTA/TGA, FTIR, UV-VIS, рентгеновской дифракции, масс-спектроскопии и элементного анализа. Согласно результатам рентгеновской дифракции порошков, образец может содержать немного примесей, таких как SnO, SnO₂ и Sn₂О₃, в то же время массовые спектры указывают на существование Sn(acac)₄, что является спорным из-за стерического эффекта. Рентгенографические исследования отдельных кристаллов показывают, что продуктом, синтезированным в водном растворе, является Sn(acac)₂Cl₂, кристаллизованный в моноклинной системе в пространственной группе C2/c с постоянными решетки a=13.983(2), b=7.8928(8), c=13.7889(19) Å , β =107.601(11)° и объемом на 1.43 % меньшим, чем объем вещества, синтезированного в сухом толуоле. Діхлордіацетилацетонат олова (ІV) синтезований у водному розчині хлориду олова (ІV) і ацетилацетона з наступним сушінням у вакуумі при кімнатній температурі. Властивості синтезованого продукту досліджені методами DTA/TGA, FTІ, UV-VІS, рентгенівської дифракції, мас-спектроскопії та елементного аналізу. Згідно з результатами рентгенівської дифракції порошків зразок може містити небагато домішок, таких як SnO, SnO₂ і Sn₂О₃, у той же час масові спектри вказують на існування Sn(acac)₄, що є суперечним внаслідок стеричного ефекту. Рентгенографічні дослідження окремих кристалів показують, що продуктом, синтезованим у водному розчині, є Sn(acac)₂Cl₂, кристалізований у моноклінній системі в просторовій групі C2/c із сталими гратки a=13.983(2), b=7.8928(8), c=13.7889(19) Å і β =107.601(11)° та об’ємом, на 1.43 % меншим за об’єм речовини, синтезованої в сухому толуолі. The authors gratefully acknowledge the financial support of The Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant N 107T277 and the support of Ministry of Ukraine for Education and Science under the Grant N M/349-2008. BU, AU and BMY also acknowledge the support of Akdeniz University, Turkey. Authors specially thank to prof. Dr. H. Ibrahim Adiguzel for collecting the powder XRD data and Ismail Kabacelik for taking the FTIR and UV-VIS spectra. Associate prof. S. Savin is also gratefully acknowledged for his valuable assistance during the sample preparation. en Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАН України Украинский химический журнал Неорганическая и физическая химия Structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (IV) synthesized in aqueous solution Структурные, спектроскопические и термические исследования дихлордиацетилацетоната олова (IV), синтезированного в водном растворе Структурні, спектроскопічні й термічні дослідження діхлордіацетилацетонату олова (IV), синтезованого у водному розчині Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (IV) synthesized in aqueous solution |
| spellingShingle |
Structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (IV) synthesized in aqueous solution Ulug, B. Turkdemir, H.M. Ulug, A. Buyukgungor, O. Yucel, M.B. Smyntyna, V.A. Grinevich, V.S. Filevskaya, L.N. Неорганическая и физическая химия |
| title_short |
Structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (IV) synthesized in aqueous solution |
| title_full |
Structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (IV) synthesized in aqueous solution |
| title_fullStr |
Structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (IV) synthesized in aqueous solution |
| title_full_unstemmed |
Structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (IV) synthesized in aqueous solution |
| title_sort |
structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (iv) synthesized in aqueous solution |
| author |
Ulug, B. Turkdemir, H.M. Ulug, A. Buyukgungor, O. Yucel, M.B. Smyntyna, V.A. Grinevich, V.S. Filevskaya, L.N. |
| author_facet |
Ulug, B. Turkdemir, H.M. Ulug, A. Buyukgungor, O. Yucel, M.B. Smyntyna, V.A. Grinevich, V.S. Filevskaya, L.N. |
| topic |
Неорганическая и физическая химия |
| topic_facet |
Неорганическая и физическая химия |
| publishDate |
2010 |
| language |
English |
| container_title |
Украинский химический журнал |
| publisher |
Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАН України |
| format |
Article |
| title_alt |
Структурные, спектроскопические и термические исследования дихлордиацетилацетоната олова (IV), синтезированного в водном растворе Структурні, спектроскопічні й термічні дослідження діхлордіацетилацетонату олова (IV), синтезованого у водному розчині |
| description |
Bis(acetylacetonato)dichlorotin(IV) is synthesized from the aqueous solutions of tin(IV) chloride and acetylacetone followed by vacuum drying at room temperature. DTA/TGA, FTIR, UV-VIS, X-ray powder and single crystal, mass spectra and elemental analysis are performed to characterize the product. X-ray powder diffraction suggests that the sample may contain some impurities such as SnO, SnO₂ and Sn₂О₃ while the mass spectra indicates the existence of Sn(acac)₄, which is arguable due to the steric effect. Single crystal investigation reveals that the product synthesized in aqueous solution is Sn(acac)₂Cl₂, crystallized in monoclinic system in space group C2/c with unit cell constants a=13.983(2), b=7.8928(8), c=13.7889(19) Å and β =107.601(11)°, whose volume is 1.43 % smaller than the one synthesized in dry toluene.
Дихлордиацетилацетонат олова (IV) синтезирован в водном растворе хлорида олова (IV) и ацетилацетона с последующей сушкой в вакууме при комнатной температуре. Свойства синтезированного продукта исследованы методами DTA/TGA, FTIR, UV-VIS, рентгеновской дифракции, масс-спектроскопии и элементного анализа. Согласно результатам рентгеновской дифракции порошков, образец может содержать немного примесей, таких как SnO, SnO₂ и Sn₂О₃, в то же время массовые спектры указывают на существование Sn(acac)₄, что является спорным из-за стерического эффекта. Рентгенографические исследования отдельных кристаллов показывают, что продуктом, синтезированным в водном растворе, является Sn(acac)₂Cl₂, кристаллизованный в моноклинной системе в пространственной группе C2/c с постоянными решетки a=13.983(2), b=7.8928(8), c=13.7889(19) Å , β =107.601(11)° и объемом на 1.43 % меньшим, чем объем вещества, синтезированного в сухом толуоле.
Діхлордіацетилацетонат олова (ІV) синтезований у водному розчині хлориду олова (ІV) і ацетилацетона з наступним сушінням у вакуумі при кімнатній температурі. Властивості синтезованого продукту досліджені методами DTA/TGA, FTІ, UV-VІS, рентгенівської дифракції, мас-спектроскопії та елементного аналізу. Згідно з результатами рентгенівської дифракції порошків зразок може містити небагато домішок, таких як SnO, SnO₂ і Sn₂О₃, у той же час масові спектри вказують на існування Sn(acac)₄, що є суперечним внаслідок стеричного ефекту. Рентгенографічні дослідження окремих кристалів показують, що продуктом, синтезованим у водному розчині, є Sn(acac)₂Cl₂, кристалізований у моноклінній системі в просторовій групі C2/c із сталими гратки a=13.983(2), b=7.8928(8), c=13.7889(19) Å і β =107.601(11)° та об’ємом, на 1.43 % меншим за об’єм речовини, синтезованої в сухому толуолі.
|
| issn |
0041–6045 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/186054 |
| citation_txt |
Structure, spectroscopic and thermal characterization of bis(acetylacetonato) dichlorotin (IV) synthesized in aqueous solution / B. Ulug, H.M. Turkdemir, A. Ulug, O. Buyukgungor, M.B. Yucel, V.A. Smyntyna, V.S. Grinevich, L.N. Filevskaya // Украинский химический журнал. — 2010. — Т. 76, № 7. — С. 12-17. — Бібліогр.: 36 назв. — англ. |
| work_keys_str_mv |
AT ulugb structurespectroscopicandthermalcharacterizationofbisacetylacetonatodichlorotinivsynthesizedinaqueoussolution AT turkdemirhm structurespectroscopicandthermalcharacterizationofbisacetylacetonatodichlorotinivsynthesizedinaqueoussolution AT uluga structurespectroscopicandthermalcharacterizationofbisacetylacetonatodichlorotinivsynthesizedinaqueoussolution AT buyukgungoro structurespectroscopicandthermalcharacterizationofbisacetylacetonatodichlorotinivsynthesizedinaqueoussolution AT yucelmb structurespectroscopicandthermalcharacterizationofbisacetylacetonatodichlorotinivsynthesizedinaqueoussolution AT smyntynava structurespectroscopicandthermalcharacterizationofbisacetylacetonatodichlorotinivsynthesizedinaqueoussolution AT grinevichvs structurespectroscopicandthermalcharacterizationofbisacetylacetonatodichlorotinivsynthesizedinaqueoussolution AT filevskayaln structurespectroscopicandthermalcharacterizationofbisacetylacetonatodichlorotinivsynthesizedinaqueoussolution AT ulugb strukturnyespektroskopičeskieitermičeskieissledovaniâdihlordiacetilacetonataolovaivsintezirovannogovvodnomrastvore AT turkdemirhm strukturnyespektroskopičeskieitermičeskieissledovaniâdihlordiacetilacetonataolovaivsintezirovannogovvodnomrastvore AT uluga strukturnyespektroskopičeskieitermičeskieissledovaniâdihlordiacetilacetonataolovaivsintezirovannogovvodnomrastvore AT buyukgungoro strukturnyespektroskopičeskieitermičeskieissledovaniâdihlordiacetilacetonataolovaivsintezirovannogovvodnomrastvore AT yucelmb strukturnyespektroskopičeskieitermičeskieissledovaniâdihlordiacetilacetonataolovaivsintezirovannogovvodnomrastvore AT smyntynava strukturnyespektroskopičeskieitermičeskieissledovaniâdihlordiacetilacetonataolovaivsintezirovannogovvodnomrastvore AT grinevichvs strukturnyespektroskopičeskieitermičeskieissledovaniâdihlordiacetilacetonataolovaivsintezirovannogovvodnomrastvore AT filevskayaln strukturnyespektroskopičeskieitermičeskieissledovaniâdihlordiacetilacetonataolovaivsintezirovannogovvodnomrastvore AT ulugb strukturníspektroskopíčníitermíčnídoslídžennâdíhlordíacetilacetonatuolovaivsintezovanogouvodnomurozčiní AT turkdemirhm strukturníspektroskopíčníitermíčnídoslídžennâdíhlordíacetilacetonatuolovaivsintezovanogouvodnomurozčiní AT uluga strukturníspektroskopíčníitermíčnídoslídžennâdíhlordíacetilacetonatuolovaivsintezovanogouvodnomurozčiní AT buyukgungoro strukturníspektroskopíčníitermíčnídoslídžennâdíhlordíacetilacetonatuolovaivsintezovanogouvodnomurozčiní AT yucelmb strukturníspektroskopíčníitermíčnídoslídžennâdíhlordíacetilacetonatuolovaivsintezovanogouvodnomurozčiní AT smyntynava strukturníspektroskopíčníitermíčnídoslídžennâdíhlordíacetilacetonatuolovaivsintezovanogouvodnomurozčiní AT grinevichvs strukturníspektroskopíčníitermíčnídoslídžennâdíhlordíacetilacetonatuolovaivsintezovanogouvodnomurozčiní AT filevskayaln strukturníspektroskopíčníitermíčnídoslídžennâdíhlordíacetilacetonatuolovaivsintezovanogouvodnomurozčiní |
| first_indexed |
2025-11-24T19:08:32Z |
| last_indexed |
2025-11-24T19:08:32Z |
| _version_ |
1850493426790825984 |
| fulltext |
UDC 54.03
B. Ulug, H.M. Turkdemir, A. Ulug, O. Buyukgungor, M.B. Yucel,
V.A. Smyntyna, V.S. Grinevich, L.N. Filevskaya
STRUCTURE, SPECTROSCOPIC AND THERMAL CHARACTERIZATION
OF BIS(ACETYLACETONATO)DICHLOROTIN(IV) SYNTHESIZED IN AQUEOUS SOLUTION
Bis(acetylacetonato)dichlorotin(IV) is synthesized from the aqueous solutions of tin(IV) chloride and acetylace-
tone followed by vacuum drying at room temperature. DTA/TGA, FTIR, UV-VIS, X-ray powder and single
crystal, mass spectra and elemental analysis are performed to characterize the product. X-ray powder diffraction
suggests that the sample may contain some impurities such as SnO, SnO2 and Sn2O3 while the mass spectra
indicates the existence of Sn(acac)4, which is arguable due to the steric effect. Single crystal investigation reveals
that the product synthesized in aqueous solution is Sn(acac)2Cl2, crystallized in monoclinic system in space group
C2/c with unit cell constants a=13.983(2), b=7.8928(8), c=13.7889(19) Ao and β=107.601(11)o, whose volume is
1.43 % smaller than the one synthesized in dry toluene.
INTRODUCTION . High optical transmittance to-
gether with high conductivity makes tin oxide a ma-
terial useful for many promising technological appli-
cations such as gas sensors [1—6], photo-con-
ducting devices [7], spectrally selective reflectors and
dye-based solar cells [8—10], ultrafiltration membra-
ne [11], transparent conductive glasses [12] and mo-
lecular shape recognition [13]. Due to its unique
properties, tin oxide has been gaining even increasing
attention both on methods of preparation [14—24]
and its electrical and optical properties [15, 25].
Several methods for the preparation of tin oxide
films and nanoparticles have been previously repor-
ted such as sonochemical [15], modified successive
ionic layer adsorption and reaction [16], chemical va-
por deposition [17], magnetron sputtering [18], py-
rolysis of thin organometallic compounds [19, 20],
evaporation of tin in oxygen atmosphere [19, 20],
spray pyrolysis [21], sol–gel [14, 22], solution phase
synthesis [23], molecular-beam deposition [24]. The
synthesis of tin oxide nanoparticles with high crystal-
linity, homogeneous composition, and well-defined
particle morphologies with narrow size distributions
is of particular technological interest since grain size
and morphology are extremely important on the elec-
trical and optical properties as well as the gas sensiti-
vity of tin oxides [6, 26—28]. Some of the methods
used in producing tin oxide films are too expensive
to employ in mass production while some suffer
from broad particle size distribution which is extre-
mely difficult to control. In these respect sol–gel me-
thods gain importance since the particle size as well
as the structure of tin oxide can be controlled in
many ways such as changing the concentration of
precursor solution, heat treatment conditions.
Sol–gel methods are usually based on the de-
composition of a complex of Sn(IV) and acetylaceto-
ne, H(acac), namely Sn(acac)2Cl2, produced by diffe-
rent methods [29—32], which involve some tedious
and time consuming processes since Sn(acac)2Cl2 is
prepared in solvents such as chloroform [31] and dry
toluene [32]. We report here a new simple method for
the synthesis of Sn(acac)2Cl2 in aqueous solution
and fully characterize the reaction product and its
crystal structure using differential thermal analy-
sis/thermo gravimetric analysis (DTA/TGA), elemen-
tal analysis, ion chromatography, Fourier transform
infrared (FTIR), Ultraviolet-Visible (UVVIS), 1H
and 13C Nuclear Magnetic Resonance (NMR),
XRay Diffraction (XRD) and Mass Spectrum (MS).
EXPERIM ENTAL PART . Synthesis. 5 mL of 25 %
water solution of NH4OH is added into a freshly pre-
pared solution of 0.12 mol (14 mL) Tin(IV) chloride
dissolved in 50 mL icecold double distilled water. The
solution is then poured into a solution of 0.5 mol
(50 mL) acetylacetone dissolved in 250 mL double
distilled water held at 40 oC. Although thick and
white sediment immediately appears, mixture is kept
mixing for two hours. 600 mL distilled water is added
in before it is allowed to settle down for 15 minutes.
Sediment is then filtered and washed by double-distil-
led water subsequent to drying at 10–2 mbar. Wa-
shing and drying processes are repeated once more
with benzene to remove some possible organic resi-
dues. The product is crystallized by slow evaporation
of acetone in which it is dissolved in at room tempe-
rature. All reagents are of AR grade.
Characterization. FTIR absorbance spectrum of
© B. Ulug, H.M. Turkdemir, A. Ulug, O. Buyukgungor, M.B. Yucel, V.A. Smyntyna, V.S. Grinevich, L.N. Filevskaya, 2010
Неорганическая и физическая химия
12 ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2010. Т. 76, № 7
the samples is measured by Bruker–Tensor 27
spectrometer with 1.0 cm–1 interval with a resolution
of 2 cm–1. 20 scans are performed in the range 400
—4000 cm–1. Solid samples are pelletized with dri-
ed KBr. UV-VIS absorbance spectra of the samples
dissolved in acetone are recorded at room tempera-
ture in the wavelength range 300—1000 nm using
Varian-Cary 100 Bio UV-VIS spectrophotometer.
Simultaneous thermogravimetry and differential
thermal analysis are carried out with a Perkin–Elmer
Exstar 6000 analyzer in air and nitrogen atmosphe-
res with a heating rate of 10 oC/min. Carbon and
hydrogen content are determined using Euro EA
2300 elemental analyzer whereas Cl and Sn analysis
are performed after dissolving the product in HNO3
using Waters 432 ion chromatography and Perkin
Elmer ICP-OES Optima 2100 DV, respectively. 1H
and 13C NMR spectra are recorded on a Varian AS
400 spectrometer operating at 400 MHz.
Powder XRD data is collected on Rigaku–Rad
B-DMAXII diffractometer with graphite-monochro-
mated CuKα radiation (λ=1.54056 Ao ) from 2 to 80o
(2θ) in steps of 0.01o whereas single crystal data are
collected on a graphite-monochromated Stoe IPDS-
II diffractometer using MoKα-radiation (λ=0.71073
Ao ). Powder and crystal data are collected at room
temperature. Single crystal data collection and cell
refinement are performed using X-AREA [33] while
data reduction is accomplished using X-RED32 [33].
SHELXL-97 [34] program system is used for solving
and refining the crystal structure.
Mass spectrum is recorded using Agilent 6300
Series LC/MS system.
RESULTS AND DISCUSSION.
Thermal decomposition of the pro-
duct (fig. 1) consists of several sta-
ges. Weight loss observed between
the room temperature and 192.0
oC which is about 4.0 % is like-
ly due to the evaporation of adsor-
bed and hydrated water. A well de-
fined endothermic peak appearing
at 204.0 oC is associated with the
melting point. TGA and DTA da-
ta (fig. 1), reveals an oxygen-rela-
ted structuring in temperature ran-
ge 192.0—308.5 oC, one at 277.4
oC and the other at 286.6 oC.
Slight increase in the slope of
TGA data in air at 277.4 oC sug-
gests that this might be related to
the reaction of thermally decomposed fragments
either with oxygen and/or hydrogen before they
leave the structure. This is supported by the lack of
steepness in DTA curve obtained in nitrogen atmo-
sphere at the same temperature range. The strong
exothermal peak appeared between 620 and 650 oC
in the DTA curve taken in air is not observed in the
curve taken in nitrogen. Exothermal peak observed
in air at around 650 oC corresponds to weight loss of
1.5 % and may due to combustion of organic resi-
dues be formed by the decomposition of acetylaceto-
nate. Further increase in temperature does not result
in any more weight loss. Residual weight at 308.5 oC
in fig. 1 is about 28 % and can be associated with
SnO2 content of the product.
C, H, Sn and Cl contents of the product, which
are 29.28, 3.41, 30.90 ± 1.1 % and 16.50 ± 0.60 %, res-
pectively, are comparable with the elemental ra-
tios calculated for Sn(acac)2Cl2 (30.97, 3.64, 30.61 and
18.28 %, respectively) and for Sn(acac)2Cl2⋅2H2O
(28.34, 4.28, 28.00 and 16.73 %, respectively). Al-
though C, H and Sn content of the product are quite
in agreement with Sn(acac)2Cl2, measured Cl content
addresses Sn(acac)2Cl2⋅2H2O. TGA result given in
fig. 1 from which a residual weight of 28 % is calcu-
lated seems to support it too. However, considering
the sublimation of Sn that may take place during the
heating, thermal analysis can be expected to present
lower Sn content than what it should be. It can thus
be argued that the results of thermal and elemental
analysis are consistent and suggest the formula
Sn(acac)2Cl2.
Fig. 1. DTA (1), TGA (2) and DTG (3) results of the product. Solid and
broken lines represent the data taken in nitrogen and air, respectively.
ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2010. Т . 76, № 7 13
Methyl group of acetylacetonato (acac) exhibits
equal intensity singlet at 2.122 and 2.214 ppm due to
CH3 groups while CH protons gives singlet at 5.709
ppm in the 1H NMR spectrum of the sample. 13C
NMR resonances located at 27.973 and 102.655 ppm
correspond to CH3 and CH groups of acac, respecti-
vely, whereas the signals due to C=O and C–O gro-
ups appear at 195.856 and 196.421 ppm, respectively.
As one may expect the amplitude ratio of the signals
arising from CH and CH3 groups is about 1/3 in 1H
NMR and signals from CH, C—O, C=O and CH3
groups are about 1/2 in 13C NMR.
FTIR absorbance spectra of the product exhi-
bits strong bands in the range 400—1600 cm–1 and
some weak bands placed on a small broad band lo-
cated between 2400 and 3600 cm–1 (fig. 2). None of
the characteristic bands of benzene are observed on
FTIR spectra of the sample indicates the effective
removal of benzene. Vibrations extending from 2500
to 3600 cm–1 have related to the presence of hyd-
rogen bond involved in O–H oscillators arising from
SnOH groups and/or adsorbed water molecules [35].
Based on Density Functional Theory
(DFT) some bands appearing between
3031 and 3108 cm–1 are however assig-
ned to ν(CH)methyl and (CH)CH3 [36].
All but the vibration at 810 cm–1
match quite well with the IR active
bands of Sn(acac)2Cl2 [36]. Vibrations
between 415 and 590 cm–1 are assig-
ned to the coupled modes of (SnO),
(OSnCl), (OSnO) and (OSnCl/ OSnO)
[30, 35, 36] while the strong vibrat ions appearing
at 1540 and 1570 cm–1 were related to the enol form
of acetylacetonate group bonded to tin [35, 36]. It
can therefore be argued with confident that all
(acac) groups are bonded to tin to form a complex
and no free acetylacetonate exists in the product.
UV-VIS spectrum of the sample reveals strong
absorbance at 331.6 nm due to (acac) group and con-
firms the FTIR results that acetylacetonate is bon-
ded to tin. X-ray powder diffraction result (fig. 3),
indicates that all peaks are due to Sn(acac)2Cl2 tho-
ught some impurities which can be attributed to
SnO, SnO2 and Sn2O3 are also present.
Signals in the mass spectra of the product (fig.
4), are grouped at around 515.3, 417.0, 353.0, 314.3,
289.0 and 101.1 m/z in which the highest occurrence
is at 353.0 m/z. 515.3 m/z at which the signal has the
lowest occurrence (1/33th of the highest peak at 353.0
m/z) is consistent with Sn(acac)4. Signal at 416.1 m/z
can be related to Sn(acac)3 e.g., one of four (acac)
groups in Sn(acac)4 is fragmented. Signals at 353.0
m/z and 317.95 m/z correspond to the fragments of
Неорганическая и физическая химия
Fig. 3. Powder XRD pattern of the product. * — Sn(acac)2Cl2, • –— SnO, o — SnO2, • — Sn2O3, ? — unknown.
F ig. 2. FTIR absorbance spectra of the product (1), acetylaceto-
nate (2) and benzene (3).
14 ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2010. Т. 76, № 7
Sn(acac)2Cl2, namely Sn(acac)2Cl
and Sn(acac)2 in which one and two
chlorine atoms are removed, re-
spectively. The signal at 289.0 m/z
is consistent with Sn(acac) while
the one at 101.1 m/z is related to
H(acac). Mass spectra of the pro-
duct is in line with powder XRD
data that the product is essentially
Sn(acac)2Cl2 but contains some tra-
ces of Sn(acac)4.
Single crystal investigation con-
firms that the product is Sn(acac)2Cl2,
crystallized in monoclinic system
in space group C2/c with unit cell
constants a=3.983(2), b=7.8929, c=
=13.7889 (19) Ao and β=107.601 (11)o.
Molecular structure of Sn(acac)2Cl2
is depicted in fig. 5 while the crystal
data and the measured bond lengths
and angles are summarized in tab-
le 1 and table 2, respectively *. Unit
cell parameters a, b and c given in
table 1 differ 0.67 %, –0.34 % and
–1.82 %, respectively, from that of
the samples produced in dry toluene
[32]. Consequence of this, the unit
cell volume of our product is smaller by 1.43 %
while the density is higher by 1.41 % compared to the
one produced in dry toluene [32]. Although (acac)–
in some cases binds to metals through the central
carbon atom, C3 in fig. 5, molecular structure acqui-
red indicates that it is bonded to tin atom through
oxygen.
Signals at 515.3 m/z and 416.1 m/z, which cor-
respond to Sn(acac)4 and to Sn(acac)3, respectively,
in fig. 4 suggest the presence of Sn(acac)4 and
Sn(acac)3Cl in the product. Signal at 416.1 m/z could
only be due to the fragments of Sn(acac)4 and/or
Sn(acac)3Cl since Sn(acac)3 can not exist as a free
standing compound. Such a possibility is not suppor-
ted by thermal analysis since DTA reveals very sharp
melting point at 204.0 oC (fig. 1). Although DTA ob-
tained in air indicates some complexities around
300 oC, which could be related to the impurities
such as those Sn(acac)4 and Sn(acac)3Cl, its wane
in DTA taken in nitrogen atmosphere excludes such
possibility. In this respect, FTIR and UV-VIS spect-
ra are not so diagnostic though powder XRD sho-
uld be more indicative. Library search of powder
XRD indicates the existence of SnO, SnO2 and
Sn2O3 impurities (fig. 3), despite the fact that the
Fig. 4. Mass spectrum of the product.
* CCDC 735456 contains the supplementary crystallographic data for this paper. These data can be obtained
free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk , or by contacting
The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
Fig. 5. Molecular structure of Sn(acac)2Cl2.
ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2010. Т . 76, № 7 15
http://www.ccdc.cam.ac.uk/data_request/cif
mailto:data_request@ccdc.cam.ac.uk
sample is prepared at room temperature. Since XRD
data of such compounds are not known no further
comment is possible.
It should also be noted that yield of Sn(acac)4
must be very low for the conditions deployed since it
does not appear in significant amount despite the fact
that the molar ratio of the constituents, namely
M[SnCl4] to M[H(acac)], is kept 1/4 or lower. Mole-
cular structure depicted in fig. 5 and the data given in
table 2 suggest that attaching the third and forth
(acac) units to Sn atom can not be so straightforward
due to the steric effect.
CONCLUSION. Bis(acetylacetonato)dichlorotin
(IV) is synthesized from the aqueous solutions of
tin (IV) chloride and acetylacetone followed by
vacuum drying at room temperature. All the analysis
performed are consistent and suggest that the pro-
duct is essentially Sn(acac)2Cl2. Single crystal data
reveals that Sn(C5H7O2)2Cl2 crystallized in mono-
clinic system in space group C2/c with unit cell di-
mensions a =13.983(2), b=7.8929, c=13.7889(19) Ao
and β=107.601(11)o. The unit cell is found to be
about 1.43 % smaller than the one synthesized in dry
toluene. Mass spectra indicates the existence of
Sn(acac)4 in the product whereas the molecular
structure obtained makes it disputable due to the
steric effect.
The authors gratefully acknowledge the finan-
cial support of The Scientific and Technological Re-
search Council of Turkey (TUBITAK) under the
Grant N 107T277 and the support of Ministry of
Ukraine for Education and Science under the Grant
N M/349-2008. BU, AU and BMY also acknowledge
the support of Akdeniz University, Turkey. Authors
specially thank to prof. Dr. H. Ibrahim Adiguzel for
collecting the powder XRD data and Ismail Kabace-
lik for taking the FTIR and UV-VIS spectra. Associate
prof. S. Savin is also gratefully acknowledged for his
valuable assistance during the sample preparation.
РЕЗЮМЕ. Дихлордиацетилацетонат олова (IV) син-
тезирован в водном растворе хлорида олова (IV) и аце-
тилацетона с последующей сушкой в вакууме при комна-
тной температуре. Свойства синтезированного продук-
та исследованы методами DTA/TGA, FTIR, UV-VIS,
рентгеновской дифракции, масс-спектроскопии и эле-
ментного анализа. Согласно результатам рентгеновской
дифракции порошков, образец может содержать немно-
Неорганическая и физическая химия
T a b l e 1
Crystal data and structure refinement parameters of bis-
(acetylacetonato)dichlorotin (IV)
Parameters Crystal data
Empirical formula Sn(C5H7O2)2Cl2
Formula weight 387.80
Temperature, K 296
X-ray, Ao MoKα, 0.71073
Crystal system Monoclinic
Space group C2/c
Unit cell parameters:
a, b, c, Ao 13.983(2), 7.8928(8), 13.7889(19)
α, β, γ, o 90.00, 107.601(11), 90.00
Z 4
V , Ao 3 1450.5(3)
D, g/cm3 1.776
Absorption coefficient, mm–1 2.16
№ of reflection collected 3440
Theta range for data collection 3.00–26.50
Independent reflections 1474
Measurement Stoe IPDS-II
Monochromator Plane graphite
Structure determination SHELXL-97
Absorption correction Integration Stoe X-RED
Final R indices [I > 2σ(I)] 0.0213
R[F2 > 2σ(F2)] 0.0231
wR(F2) 0.0583
Goodness-of-fit on F2 1.145
Peak and hole, Ao 3 0.297, –0.674
T a b l e 2
Some selected bond lengths (Ao ) and angles (o) of bis(ace-
tylacetonato)dichlorotin (IV)
Bond
Bond
length, Ao Bond Angle, o
Sn(1)–O(1) 2.0733(17) O(1)–Sn(1)–O(1) i* 84.08(7)
Sn(1)–O(2) 2.058(2) O(1)–Sn(1)–O(2) i 86.69(8)
Sn(1)–Cl(1) 2.3543(9) O(2)–Sn(1)–O(2) i 172.22(6)
O(1)–C(2) 1.280(3) O(1)–Sn(1)–Cl(1) 173.36(5)
O(2)–C(4) 1.296(3) O(2)–Sn(1)–Cl(1) 93.74(6)
C(1)–C(2) 1.491(4) Cl(1)–Sn(1)–Cl(1) i 97.00(3)
C(2)–C(3) 1.381(4) C(2)–O(1)–Sn(1) 125.33(17)
C(3)–C(4) 1.390(4) C(4)–O(2)–Sn(1) 124.70(17)
C(4)–C(5) 1.490(5)
* Symmetry code i : 1–x , y, 1
2 – z.
16 ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2010. Т. 76, № 7
го примесей, таких как SnO, SnO2 и Sn2O3, в то же вре-
мя массовые спектры указывают на существование
Sn(acac)4, что является спорным из-за стерического эф-
фекта. Рентгенографические исследования отдельных
кристаллов показывают, что продуктом, синтезиро-
ванным в водном растворе, является Sn(acac)2Cl2, крис-
таллизованный в моноклинной системе в пространствен-
ной группе C2/c с постоянными решетки a=13.983(2),
b=7.8928(8), c=13.7889(19) Ao , β=107.601(11)о и объемом на
1.43 % меньшим, чем объем вещества, синтезированного
в сухом толуоле.
РЕЗЮМЕ. Діхлордіацетилацетонат олова (ІV) син-
тезований у водному розчині хлориду олова (ІV) і аце-
тилацетона з наступним сушінням у вакуумі при кімна-
тній температурі. Властивості синтезованого продукту
досліджені методами DTA/TGA, F TІ, UV-VІS, рентге-
нівської дифракції, мас-спектроскопії та елементного ана-
лізу. Згідно з результатами рентгенівської дифракції по-
рошків зразок може містити небагато домішок, таких як
SnO, SnO2 і Sn2O3, у той же час масові спектри вказують
на існування Sn(acac)4, що є суперечним внаслідок сте-
ричного ефекту. Рентгенографічні дослідження окремих
кристалів показують, що продуктом, синтезованим у вод-
ному розчині, є Sn(acac)2Cl2, кристалізований у моноклін-
ній системі в просторовій групі C2/c із сталими гратки
a=13.983(2), b=7.8928(8), c=13.7889(19) Ao і β=107.601(11)о
та об’ємом, на 1.43 % меншим за об’єм речовини, синте-
зованої в сухому толуолі.
1. Stepanov A.G. // J. Organomet. Chem. -1989. -361.
-P. 157—159.
2. Comini E., Faglia G., Pan Z . et al. // Appl. Phys.
Lett. -2002. -81. -P. 1869—1871.
3. Song K.H., Park S .J. // J. Mater. Sci.: Mater. Electron.
-1993. -4. -P. 249—253.
4. W ang X., Y ee S .S ., Carey W .P. // Sens. Actuators
B. -1995. -24–25. -P. 454—457.
5. Varghese O.K., M alhotra L .K. // Ibid. -1998. -53. -P.
19—23.
6. Xu J., Tamaki N.N., Y amazoe N . // Ibid. -1991. -3.
-P. 147—155.
7. Comini E., Guidi V ., M alagu C. et al. // J. Phys.
Chem. B. -2004. -108. -P. 1882—1887.
8. Vuong D.D., Sakai G., Shimanoe K., Y amazoe N . //
Sensors and Actuators B. -2004. -103. -P. 386—391.
9. Stergiopoulos T., Arabatzis I.M ., Cachet H., Falaras P.
// J. Photochem. Photob. A: Chem. -2003. -155. -P.
163—170.
10. Ferrere S ., Z aban A., Gsegg B.A . // J. Phys. Chem.
B. -1997. -101. -P. 4490—4493.
11. Santos L .R.B., Santilli C.V., Barbot A . et al. // J.
Sol–Gel Sci. Technol. -2000. -19. -P. 621—625.
12. Tadanaga K., Owan T., M orinaga J. et al. // Ibid.
-2000. -19. -P. 791—794.
13. Tanimura T ., Katada N., Niwa M . // Langmuir. -2000.
-16. -P. 3858—3865.
14. Jarzebski Z .M ., M arton J.P. // J. Electrochem. Soc.
-1976. -123, N 10. -333C—346C.
15. Z hu J., L u Z .H., Aruna S.T. et al. // Chem. Mater.
-2000. -12. -P. 2557—2566.
16. Deshpande N.G., Vyas J.C., Sharma R . // Thin Solid
Films. -2008. -516. -P. 8587—8593.
17. Lee S .W ., Kim Y .W ., Chen H . // Appl. Phys. Lett.
-2001. -78. -P. 350—352.
18. M inami J., Nanto N., Tanata S . // Jpn. J. Appl.
Phys. -1988. -27. -P. L287—L289.
19. Nayral C., Ely T.O., M aisonnat A. et al. // Adv.
Mater. -1999. -11. -P. 61—63.
20. Leite E.R ., W eber I.T ., Longo E., Varela J.A . // Ibid.
-2000. -12. -P. 965—968.
21. Shanthi S ., Subramanian C., Ramasamy P. // Cryt.
Res. Technol. -1999. -34. -P. 1037—1046.
22. Hiratsuka S .R., Santilli V .C., Silva V .D., Pulcinelli
H.S . // J. Non-Cryst. Solids. -1992. -147–148. -P. 67—73.
23. Cao Q., Gao Y ., Chen X. et al. // Chem. Lett. -2006.
-35. -P. 178—179.
24. Gaiduk P.I., Hansen J.L ., Larsen A .N . // Appl. Phys.
Lett. -2008. -92. -P. 193112(3).
25. Dutta K., De S .K. // J. Appl. Phys. -2007. -102. -P.
084110(7).
26. Rella R., Siciliano P., Capone S . et al. // Sensors
and Actuators B. -1999. -58. -P. 283—288.
27. Chiorino A., Ghiotti G., Prinetto F. et al. // Ibid.
-1999. -59. -P. 203—209.
28. Hooker S.A . // Proc. of the Nanoparticles 2002. -P. 1–7.
29. M organ G.T ., Drew H.D.K. // J. Chem. Soc. -1924.
-15. -P. 372—381.
30. Ueeda R., Kawasaki Y ., Tanaka T., Okawara R . //
J. Organomet. Chem. -1966. -5. -P. 194—197.
31. Dilthey W . // Ber. Deut. Chem. Ges. -1903. -36. -P.
923—930.
32. Shahzadi S ., Ali S ., Jin G.X. // J. Iranian Chem.
Soc. -2006. -3, N 4. -P. 323—326.
33. X -AR EA and X-RED32. Stoe & Cie, Darmstadt,
Germany, 2002.
34. Sheldrick G.M . // Acta Cryst. -2008. -A64. -P. 112—122.
35. M onredon S. de, Cellot A., Ribot F. et al. // J. Mater.
Chem. -2002. -12. -P. 2396—2400.
36. Tellez C.A., Hollauer E., S ilva M .I.P. et al. // Spectro-
chim. Acta. Pt A. -2001. -57. -P. 1149—1161.
Akdeniz University, Antalya, Received 22.03.2010
Uludag University, Bursa,
19 Mayis University, Samsun, Turkey
Odessa National I.I. Mechnikov University, Ukraine
ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2010. Т . 76, № 7 17
|