Гетерогенна математична модель пружного тіла з тонким податливим на згин включенням

Описано гетерогенну математичну модель пружного тiла з тонким включенням. Напружено-деформований стан включення моделюється спiввiдношеннями безмоментної теорiї оболонок, для масивної частини застосовуються спiввiдношення класичної теорiї пружностi. Результати числових експериментiв подано для плоск...

Full description

Saved in:
Bibliographic Details
Date:2009
Main Authors: Винницька, Л.І., Григоренко, Я.М., Савула, Я.Г.
Format: Article
Language:Ukrainian
Published: Видавничий дім "Академперіодика" НАН України 2009
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/18653
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Гетерогенна математична модель пружного тіла з тонким податливим на згин включенням / Л. I. Винницька, Я.М. Григоренко, Я. Г. Савула // Доп. НАН України. — 2009. — № 9. — С. 62-66. — Бібліогр.: 8 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Описано гетерогенну математичну модель пружного тiла з тонким включенням. Напружено-деформований стан включення моделюється спiввiдношеннями безмоментної теорiї оболонок, для масивної частини застосовуються спiввiдношення класичної теорiї пружностi. Результати числових експериментiв подано для плоскої задачi, що описує розтяг пластини з круговим отвором. Дослiджується вплив тонкого покриття на коефiцiєнт концентрацiї напружень та розподiл напружень у пластинi. A heterogeneous mathematical model of elastic body with thin inclusion is stated. The membrane shell theory is used for the modeling of a stress-strain state of the inclusion. A stress-strain state of the matrix is described by the equations of elasticity theory. Numerical results are represented for the plane problem which describes the stretching of a plate with circular hole. The influence of a thin coating on the stress concentration factor and the distribution of stresses in the plate is investigated.
ISSN:1025-6415