Enumeration of strong dichotomy patterns

We apply the version of Pólya-Redfield theory obtained by White to count patterns with a given automorphism group to the enumeration of strong dichotomy patterns, that is, we count bicolor patterns of Z2k with respect to the action of Aff(Z2k) and with trivial isotropy group. As a byproduct, a conje...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2018
Автор: Agustín-Aquino, O.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/188356
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Enumeration of strong dichotomy patterns / O.A. Agustín-Aquino // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 165–176. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188356
record_format dspace
spelling Agustín-Aquino, O.A.
2023-02-25T14:30:12Z
2023-02-25T14:30:12Z
2018
Enumeration of strong dichotomy patterns / O.A. Agustín-Aquino // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 165–176. — Бібліогр.: 10 назв. — англ.
1726-3255
2010 MSC: 00A65, 05E18
https://nasplib.isofts.kiev.ua/handle/123456789/188356
We apply the version of Pólya-Redfield theory obtained by White to count patterns with a given automorphism group to the enumeration of strong dichotomy patterns, that is, we count bicolor patterns of Z2k with respect to the action of Aff(Z2k) and with trivial isotropy group. As a byproduct, a conjectural instance of phenomenon similar to cyclic sieving for special cases of these combinatorial objects is proposed.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Enumeration of strong dichotomy patterns
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Enumeration of strong dichotomy patterns
spellingShingle Enumeration of strong dichotomy patterns
Agustín-Aquino, O.A.
title_short Enumeration of strong dichotomy patterns
title_full Enumeration of strong dichotomy patterns
title_fullStr Enumeration of strong dichotomy patterns
title_full_unstemmed Enumeration of strong dichotomy patterns
title_sort enumeration of strong dichotomy patterns
author Agustín-Aquino, O.A.
author_facet Agustín-Aquino, O.A.
publishDate 2018
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We apply the version of Pólya-Redfield theory obtained by White to count patterns with a given automorphism group to the enumeration of strong dichotomy patterns, that is, we count bicolor patterns of Z2k with respect to the action of Aff(Z2k) and with trivial isotropy group. As a byproduct, a conjectural instance of phenomenon similar to cyclic sieving for special cases of these combinatorial objects is proposed.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188356
citation_txt Enumeration of strong dichotomy patterns / O.A. Agustín-Aquino // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 165–176. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT agustinaquinooa enumerationofstrongdichotomypatterns
first_indexed 2025-11-28T22:30:54Z
last_indexed 2025-11-28T22:30:54Z
_version_ 1850854311716716544