Enumeration of strong dichotomy patterns
We apply the version of Pólya-Redfield theory obtained by White to count patterns with a given automorphism group to the enumeration of strong dichotomy patterns, that is, we count bicolor patterns of Z2k with respect to the action of Aff(Z2k) and with trivial isotropy group. As a byproduct, a conje...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2018 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/188356 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Enumeration of strong dichotomy patterns / O.A. Agustín-Aquino // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 165–176. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188356 |
|---|---|
| record_format |
dspace |
| spelling |
Agustín-Aquino, O.A. 2023-02-25T14:30:12Z 2023-02-25T14:30:12Z 2018 Enumeration of strong dichotomy patterns / O.A. Agustín-Aquino // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 165–176. — Бібліогр.: 10 назв. — англ. 1726-3255 2010 MSC: 00A65, 05E18 https://nasplib.isofts.kiev.ua/handle/123456789/188356 We apply the version of Pólya-Redfield theory obtained by White to count patterns with a given automorphism group to the enumeration of strong dichotomy patterns, that is, we count bicolor patterns of Z2k with respect to the action of Aff(Z2k) and with trivial isotropy group. As a byproduct, a conjectural instance of phenomenon similar to cyclic sieving for special cases of these combinatorial objects is proposed. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Enumeration of strong dichotomy patterns Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Enumeration of strong dichotomy patterns |
| spellingShingle |
Enumeration of strong dichotomy patterns Agustín-Aquino, O.A. |
| title_short |
Enumeration of strong dichotomy patterns |
| title_full |
Enumeration of strong dichotomy patterns |
| title_fullStr |
Enumeration of strong dichotomy patterns |
| title_full_unstemmed |
Enumeration of strong dichotomy patterns |
| title_sort |
enumeration of strong dichotomy patterns |
| author |
Agustín-Aquino, O.A. |
| author_facet |
Agustín-Aquino, O.A. |
| publishDate |
2018 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
We apply the version of Pólya-Redfield theory obtained by White to count patterns with a given automorphism group to the enumeration of strong dichotomy patterns, that is, we count bicolor patterns of Z2k with respect to the action of Aff(Z2k) and with trivial isotropy group. As a byproduct, a conjectural instance of phenomenon similar to cyclic sieving for special cases of these combinatorial objects is proposed.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188356 |
| citation_txt |
Enumeration of strong dichotomy patterns / O.A. Agustín-Aquino // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 165–176. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT agustinaquinooa enumerationofstrongdichotomypatterns |
| first_indexed |
2025-11-28T22:30:54Z |
| last_indexed |
2025-11-28T22:30:54Z |
| _version_ |
1850854311716716544 |