On certain homological invariant and its relation with Poincaré duality pairs
Let G be a group, S = {Sᵢ, i ∊ I} a non empty family of (not necessarily distinct) subgroups of infinite index in G and M a Z₂G-module. In [4] the authors defined a homological invariant E*(G, S,M), which is “dual” to the cohomological invariant E(G, S,M), defined in [1]. In this paper we present a...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2018 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2018
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/188357 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On certain homological invariant and its relation with Poincaré duality pairs / M.G.C. Andrade, A.B. Gazon, A.F. Lima // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 177–187. — Бібліогр.: 7 назв. — англ. |