On certain homological invariant and its relation with Poincaré duality pairs
Let G be a group, S = {Sᵢ, i ∊ I} a non empty family of (not necessarily distinct) subgroups of infinite index in G and M a Z₂G-module. In [4] the authors defined a homological invariant E*(G, S,M), which is “dual” to the cohomological invariant E(G, S,M), defined in [1]. In this paper we present a...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2018 |
| Hauptverfasser: | Andrade, M.G.C., Gazon, A.B., Lima A.F. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2018
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/188357 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On certain homological invariant and its relation with Poincaré duality pairs / M.G.C. Andrade, A.B. Gazon, A.F. Lima // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 177–187. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
The relations for Poincarй series of algebras of invariants of binary forms
von: N. B. Ilash
Veröffentlicht: (2021) -
Duality-Symmetric Approach to General Relativity and Supergravity
von: Nurmagambetov, A.J.
Veröffentlicht: (2006) -
Symmetries and Invariant Differential Pairings
von: Eastwood, M.G.
Veröffentlicht: (2007) -
Relative Extensions of Modules and Homology Groups
von: Lixin Mao, et al.
Veröffentlicht: (2015) -
Certain invariants of generic matrix algebras
von: Öğüşlü, Nazar Ş., et al.
Veröffentlicht: (2024)