On dual Rickart modules and weak dual Rickart modules

Let R be a ring. A right R-module M is called d-Rickart if for every endomorphism φ of M, φ(M) is a direct summand of M and it is called wd-Rickart if for every nonzero endomorphism φ of M, φ(M) contains a nonzero direct summand of M. We begin with some basic properties of (w)d-Rickart modules. Then...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2018
Hauptverfasser: Keskin Tütüncü, D., Orhan Ertas, N., Tribak, R.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188359
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On dual Rickart modules and weak dual Rickart modules / D. Keskin Tütüncü, N. Orhan Ertas, R. Tribak // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 200–214 . — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188359
record_format dspace
spelling Keskin Tütüncü, D.
Orhan Ertas, N.
Tribak, R.
2023-02-25T14:44:12Z
2023-02-25T14:44:12Z
2018
On dual Rickart modules and weak dual Rickart modules / D. Keskin Tütüncü, N. Orhan Ertas, R. Tribak // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 200–214 . — Бібліогр.: 15 назв. — англ.
1726-3255
2010 MSC: Primary 16D10; Secondary 16D80.
https://nasplib.isofts.kiev.ua/handle/123456789/188359
Let R be a ring. A right R-module M is called d-Rickart if for every endomorphism φ of M, φ(M) is a direct summand of M and it is called wd-Rickart if for every nonzero endomorphism φ of M, φ(M) contains a nonzero direct summand of M. We begin with some basic properties of (w)d-Rickart modules. Then we study direct sums of (w)d-Rickart modules and the class of rings for which every finitely generated module is (w)d-Rickart. We conclude by some structure results.
This work has been done during a visit of the third author to the Department of Mathematics, Karabük University in August 2015. The authors would like to express their special thanks to TÜBİTAK (Scientific and Technological Research Council of Turkey) for their financial support through the grant BİDEB 2221 that makes the third author’s visit possible to Turkey in August 2015 and Karabük University for their support and hospitality. Also the first and third authors wish to thank the second author and her family for their kind hospitality.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On dual Rickart modules and weak dual Rickart modules
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On dual Rickart modules and weak dual Rickart modules
spellingShingle On dual Rickart modules and weak dual Rickart modules
Keskin Tütüncü, D.
Orhan Ertas, N.
Tribak, R.
title_short On dual Rickart modules and weak dual Rickart modules
title_full On dual Rickart modules and weak dual Rickart modules
title_fullStr On dual Rickart modules and weak dual Rickart modules
title_full_unstemmed On dual Rickart modules and weak dual Rickart modules
title_sort on dual rickart modules and weak dual rickart modules
author Keskin Tütüncü, D.
Orhan Ertas, N.
Tribak, R.
author_facet Keskin Tütüncü, D.
Orhan Ertas, N.
Tribak, R.
publishDate 2018
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let R be a ring. A right R-module M is called d-Rickart if for every endomorphism φ of M, φ(M) is a direct summand of M and it is called wd-Rickart if for every nonzero endomorphism φ of M, φ(M) contains a nonzero direct summand of M. We begin with some basic properties of (w)d-Rickart modules. Then we study direct sums of (w)d-Rickart modules and the class of rings for which every finitely generated module is (w)d-Rickart. We conclude by some structure results.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188359
citation_txt On dual Rickart modules and weak dual Rickart modules / D. Keskin Tütüncü, N. Orhan Ertas, R. Tribak // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 200–214 . — Бібліогр.: 15 назв. — англ.
work_keys_str_mv AT keskintutuncud ondualrickartmodulesandweakdualrickartmodules
AT orhanertasn ondualrickartmodulesandweakdualrickartmodules
AT tribakr ondualrickartmodulesandweakdualrickartmodules
first_indexed 2025-12-07T19:37:59Z
last_indexed 2025-12-07T19:37:59Z
_version_ 1850879539512606720