On dual Rickart modules and weak dual Rickart modules
Let R be a ring. A right R-module M is called d-Rickart if for every endomorphism φ of M, φ(M) is a direct summand of M and it is called wd-Rickart if for every nonzero endomorphism φ of M, φ(M) contains a nonzero direct summand of M. We begin with some basic properties of (w)d-Rickart modules. Then...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2018 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2018
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/188359 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On dual Rickart modules and weak dual Rickart modules / D. Keskin Tütüncü, N. Orhan Ertas, R. Tribak // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 200–214 . — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188359 |
|---|---|
| record_format |
dspace |
| spelling |
Keskin Tütüncü, D. Orhan Ertas, N. Tribak, R. 2023-02-25T14:44:12Z 2023-02-25T14:44:12Z 2018 On dual Rickart modules and weak dual Rickart modules / D. Keskin Tütüncü, N. Orhan Ertas, R. Tribak // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 200–214 . — Бібліогр.: 15 назв. — англ. 1726-3255 2010 MSC: Primary 16D10; Secondary 16D80. https://nasplib.isofts.kiev.ua/handle/123456789/188359 Let R be a ring. A right R-module M is called d-Rickart if for every endomorphism φ of M, φ(M) is a direct summand of M and it is called wd-Rickart if for every nonzero endomorphism φ of M, φ(M) contains a nonzero direct summand of M. We begin with some basic properties of (w)d-Rickart modules. Then we study direct sums of (w)d-Rickart modules and the class of rings for which every finitely generated module is (w)d-Rickart. We conclude by some structure results. This work has been done during a visit of the third author to the Department of Mathematics, Karabük University in August 2015. The authors would like to express their special thanks to TÜBİTAK (Scientific and Technological Research Council of Turkey) for their financial support through the grant BİDEB 2221 that makes the third author’s visit possible to Turkey in August 2015 and Karabük University for their support and hospitality. Also the first and third authors wish to thank the second author and her family for their kind hospitality. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics On dual Rickart modules and weak dual Rickart modules Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On dual Rickart modules and weak dual Rickart modules |
| spellingShingle |
On dual Rickart modules and weak dual Rickart modules Keskin Tütüncü, D. Orhan Ertas, N. Tribak, R. |
| title_short |
On dual Rickart modules and weak dual Rickart modules |
| title_full |
On dual Rickart modules and weak dual Rickart modules |
| title_fullStr |
On dual Rickart modules and weak dual Rickart modules |
| title_full_unstemmed |
On dual Rickart modules and weak dual Rickart modules |
| title_sort |
on dual rickart modules and weak dual rickart modules |
| author |
Keskin Tütüncü, D. Orhan Ertas, N. Tribak, R. |
| author_facet |
Keskin Tütüncü, D. Orhan Ertas, N. Tribak, R. |
| publishDate |
2018 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Let R be a ring. A right R-module M is called d-Rickart if for every endomorphism φ of M, φ(M) is a direct summand of M and it is called wd-Rickart if for every nonzero endomorphism φ of M, φ(M) contains a nonzero direct summand of M. We begin with some basic properties of (w)d-Rickart modules. Then we study direct sums of (w)d-Rickart modules and the class of rings for which every finitely generated module is (w)d-Rickart. We conclude by some structure results.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188359 |
| citation_txt |
On dual Rickart modules and weak dual Rickart modules / D. Keskin Tütüncü, N. Orhan Ertas, R. Tribak // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 200–214 . — Бібліогр.: 15 назв. — англ. |
| work_keys_str_mv |
AT keskintutuncud ondualrickartmodulesandweakdualrickartmodules AT orhanertasn ondualrickartmodulesandweakdualrickartmodules AT tribakr ondualrickartmodulesandweakdualrickartmodules |
| first_indexed |
2025-12-07T19:37:59Z |
| last_indexed |
2025-12-07T19:37:59Z |
| _version_ |
1850879539512606720 |