Gram matrices and Stirling numbers of a class of diagram algebras, II

In the paper [6], we introduced Gram matrices for the signed partition algebras, the algebra of Z₂-relations and the partition algebras. (s₁, s₂, r₁, r₂, p₁, p₂)-Stirling numbers of the second kind are also introduced and their identities are established. In this paper, we prove that the Gram matrix...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2018
Main Authors: Karimilla Bi, N., Parvathi, M.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2018
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/188360
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Gram matrices and Stirling numbers of a class of diagram algebras, II / N. Karimilla Bi, M. Parvathi // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 215–256. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188360
record_format dspace
spelling Karimilla Bi, N.
Parvathi, M.
2023-02-25T14:47:49Z
2023-02-25T14:47:49Z
2018
Gram matrices and Stirling numbers of a class of diagram algebras, II / N. Karimilla Bi, M. Parvathi // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 215–256. — Бібліогр.: 18 назв. — англ.
1726-3255
2010 MSC: 16Z05
https://nasplib.isofts.kiev.ua/handle/123456789/188360
In the paper [6], we introduced Gram matrices for the signed partition algebras, the algebra of Z₂-relations and the partition algebras. (s₁, s₂, r₁, r₂, p₁, p₂)-Stirling numbers of the second kind are also introduced and their identities are established. In this paper, we prove that the Gram matrix is similar to a matrix which is a direct sum of block submatrices. As a consequence, the semisimplicity of a signed partition algebra is established.
The authors would like to express their gratitude and sincere thanks to the referee for all his(her) valuable comments and suggestions which in turn made the paper easy to read.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Gram matrices and Stirling numbers of a class of diagram algebras, II
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Gram matrices and Stirling numbers of a class of diagram algebras, II
spellingShingle Gram matrices and Stirling numbers of a class of diagram algebras, II
Karimilla Bi, N.
Parvathi, M.
title_short Gram matrices and Stirling numbers of a class of diagram algebras, II
title_full Gram matrices and Stirling numbers of a class of diagram algebras, II
title_fullStr Gram matrices and Stirling numbers of a class of diagram algebras, II
title_full_unstemmed Gram matrices and Stirling numbers of a class of diagram algebras, II
title_sort gram matrices and stirling numbers of a class of diagram algebras, ii
author Karimilla Bi, N.
Parvathi, M.
author_facet Karimilla Bi, N.
Parvathi, M.
publishDate 2018
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description In the paper [6], we introduced Gram matrices for the signed partition algebras, the algebra of Z₂-relations and the partition algebras. (s₁, s₂, r₁, r₂, p₁, p₂)-Stirling numbers of the second kind are also introduced and their identities are established. In this paper, we prove that the Gram matrix is similar to a matrix which is a direct sum of block submatrices. As a consequence, the semisimplicity of a signed partition algebra is established.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188360
citation_txt Gram matrices and Stirling numbers of a class of diagram algebras, II / N. Karimilla Bi, M. Parvathi // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 215–256. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT karimillabin grammatricesandstirlingnumbersofaclassofdiagramalgebrasii
AT parvathim grammatricesandstirlingnumbersofaclassofdiagramalgebrasii
first_indexed 2025-11-26T01:45:40Z
last_indexed 2025-11-26T01:45:40Z
_version_ 1850606141392814080
fulltext “adm-n2” — 2018/7/24 — 22:32 — page 215 — #53 Algebra and Discrete Mathematics RESEARCH ARTICLE Volume 25 (2018). Number 2, pp. 215–256 c© Journal “Algebra and Discrete Mathematics” Gram matrices and Stirling numbers of a class of diagram algebras, II N. Karimilla Bi and M. Parvathi Communicated by R. Wisbauer Abstract. In the paper [6], we introduced Gram matrices for the signed partition algebras, the algebra of Z2-relations and the partition algebras. (s1, s2, r1, r2, p1, p2)-Stirling numbers of the second kind are also introduced and their identities are established. In this paper, we prove that the Gram matrix is similar to a matrix which is a direct sum of block submatrices. As a consequence, the semisimplicity of a signed partition algebra is established. 1. Introduction In this paper, we establish that the Gram matrices Gk 2s1+s2 and −→ Gk 2s1+s2 introduced in [6] are similar to matrices G̃k 2s1+s2 and −̃→ G k 2s1+s2 respectively and each of which is a direct sum of block sub matrices Ã2r1+r2,2r1+r2 and −̃→ A 2r1+r2,2r1+r2 of sizes f2r1+r2 2s1+s2 and −→ f 2r1+r2 2s1+s2 respectively. The diagonal entries of the matrices Ã2r1+r2,2r1+r2 and −̃→ A 2r1+r2,2r1+r2 are the same and the diagonal element is a product of r1 quadratic polynomials and r2 linear polynomials which could help in determining the roots of the determinant of the Gram matrix. Similarly, we have also established that the Gram matrix Gk s of a partition algebra is similar to a matrix G̃k s which is a direct sum of block matrices Ãr,r of size f r s . The diagonal entries of 2010 MSC: 16Z05. Key words and phrases: Gram matrices, partition algebras, signed partition algebras and the algebra of Z2-relations. “adm-n2” — 2018/7/24 — 22:32 — page 216 — #54 216 Gram matrices and Stirling numbers the matrices Ãr,r are the same and the diagonal element is a product of r linear polynomials which could help in determining the roots of the determinant of the Gram matrix. Using the cellularity structure defined in [5], we show that the algebra of Z2-relations and signed partition algebras are semisimple over K(x) where K is a field of characteristic zero and x is an indeterminate and it is also semisimple over a field of characteristic zero except for a finite number of algebraic elements and we also prove that the algebra of Z2- relations and the signed partition algebras are quasi-hereditary over a field of characteristic zero. In particular, if q is an integer 6 k − 2 and q is a root of the polynomial x2 − x− 2r′, 0 6 r′ 6 k − 2 then the algebras AZ2 k (q) and −→ AZ2 k (q) are not semisimple. 2. Stirling numbers of second kind of the algebra of Z2-relations, signed partition algebras and partition algebras Lemma 2.1. (a) In the algebra of Z2-relations, let dp1,p2i,α , d r1,r2 j,β ∈ J2k 2s1+s2 with 2p1 + p2 < 2r1 + r2 then d p1,p2 i,α is coarser than d r1,r2 j,β if and only if l(dp1,p2i,α .d r1,r2 j,β ) = 2p1 + p2 where J2k 2s1+s2 is as in Notation 3.6(a) in [6]. (b) In signed partition algebras, let d p1,p2 i,α , d r1,r2 j,β ∈ −→ J 2k 2s1+s2 with 2p1 + p2 < 2r1 + r2 then d p1,p2 i,α is coarser than d r1,r2 j,β if and only if l(dp1,p2i,α .d r1,r2 j,β ) = 2p1 + p2 where −→ J 2k 2s1+s2 is as in Notation 3.6 (b) in [6]. (c) In partition algebras, let Rd p i,α , R drj,β ∈ Jk s with p < r then Rd p i,α is coarser than R drj,β if and only if l(Rd p i,α .R drj,β ) = p where Jk s is as in Notation 3.6(c) in [6]. Proof. Part (a): d p1,p2 i,α is coarser than d r1,r2 j,β if and only if every {e}- through class of dr1,r2j,β is contained in a {e}-through class of dp1,p2i,α , every Z2-through class of dr1,r2j,β is contained in a Z2-through class of dp1,p2i,α , every {e}-horizontal edge of dr1,r2j,β is contained in either a {e} or Z2-horizontal edge or {e}-through class of dp1,p2i,α and every Z2-horizontal edge of dr1,r2j,β is contained in a Z2-horizontal edge or Z2-through class of dp1,p2i,α . Thus, the number of loops in the product d p1,p2 i,α .d r1,r2 j,β is 2p1 + p2. The proof of (b) and (c) are similar to the proof of (a). “adm-n2” — 2018/7/24 — 22:32 — page 217 — #55 N. Karimilla Bi, M. Parvathi 217 Lemma 2.2 ([18]). Given any two diagrams d r1,r2 i,α and d r′ 1 ,r′ 2 j,β such that ♯p(dr1,r2i,α .d r′ 1 ,r′ 2 j,β ) = 2s1 + s2 then there exists a unique diagram which is the smallest diagram d r′′ 1 ,r′′ 2 l,γ among the diagrams coarser than both d r1,r2 i,α and d r′ 1 ,r′ 2 j,β . Also, l(d r′′ 1 ,r′′ 2 l,γ .d r′′ 1 ,r′′ 2 l,γ ) = l(d r′′ 1 ,r′′ 2 l,γ .d r1,r2 i,α ) = l(d r′′ 1 ,r′′ 2 l,γ .d r′ 1 ,r′ 2 j,β ). Proof. The proof follows from Definition 2.13 in [6]. and [18]. 2.1. Column operations on the Gram matrices of the algebra of Z2-relations, signed partition algebras and partition al- gebras We now perform the column operations inductively on the Gram matrices of the algebra of Z2-relations, signed partition algebras and partition algebras as follows: Let d 0,0 i,α be coarser than d 0,1 j,β . Then by Lemma 2.2, l(d0,0i,α.d 0,0 i,α) = l(d0,0i,α.d 0,1 j,β) = 0. We apply the column operation: L(j,β,0,1) → L(j,β,0,1) − L(i,α,0,0) then the ((i, α, 0, 0), (j, β, 0, 1))-entry becomes a(i,α,0,0),(j,β,0,1) − a(i,α,0,0),(i,α,0,0) = 1− 1 = 0. Similarly, apply the column operations L(j,β,r′ 1 ,r′ 2 ) → L(j,β,r′ 1 ,r′ 2 ) − L(i,α,r1,r2) whenever d r1,r2 i,α is coarser than d r′ 1 ,r′ 2 j,β . Then b(i,α,r1,r2),(j,β,r′1,r ′ 2 ) denotes the ((i, α, r1, r2), (j, β, r ′ 1, r ′ 2))-entry after all the column operations are carried out b(i,α,r1,r2),(j,β,r′1,r ′ 2 ) = a(i,α,r1,r2),(j,β,r′1,r ′ 2 ) − ∑ d r′′′ 1 ,r′′′ 2 l,γ >d r1,r2 i,α d r′′′ 1 ,r′′′ 2 l,γ >d r′ 1 ,r′ 2 j,β b(i,α,r1,r2),(l,γ,r′′′1 ,r′′′ 2 ) − ∑ d r′′′′ 1 ,r′′′′ 2 k′,δ′ >d r′ 1 ,r′ 2 j,β d r′′′′ 1 ,r′′′′ 2 k′,δ′ 6>d r1,r2 i,α b(i,α,r1,r2),(k′,δ′,r′′′′1 ,r′′′′ 2 ) (2.1) Lemma 2.3. (a) In the algebra of Z2-relations and signed partition alge- bras, let (i, α, r1, r2) < (j, β, r′1, r ′ 2). “adm-n2” — 2018/7/24 — 22:32 — page 218 — #56 218 Gram matrices and Stirling numbers (i) If dr1,r2i,α is coarser than d r′ 1 ,r′ 2 j,β then b(j,β,r′ 1 ,r′ 2 ),(i,α,r1,r2) = b(i,α,r1,r2),(i,α,r1,r2). (ii) If dr1,r2i,α is not coarser than d r′ 1 ,r′ 2 j,β and l(dr1,r2i,α .d r′ 1 ,r′ 2 j,β ) > 0 then b(i,α,r1,r2),(j,β,r′1,r ′ 2 ) = 0 and b(j,β,r′ 1 ,r′ 2 ),(i,α,r1,r2) = 0. (iii) If dr1,r2i,α is coarser than d r′ 1 ,r′ 2 j,β then b(i,α,r1,r2),(j,β,r′1,r ′ 2 ) = 0 where b(i,α,r1,r2),(j,β,r′1,r ′ 2 ) is the ((i, α, r1, r2), (j, β, r ′ 1, r ′ 2))-th entry after all the column operations are carried out. (b) In partition algebras, let (i, α, r) < (j, β, r′). (i) If Rdri,α is coarser than R dr ′ j,β then b(j,β,r′),(i,α,r) = b(i,α,r),(i,α,r). (ii) If Rdri,α is not coarser than R dr ′ j,β and l(Rdri,α .R dr ′ j,β ) > 0 then b(i,α,r),(j,β,r′) = 0 and b(j,β,r′),(i,α,r) = 0. (iii) If Rdri,α is coarser than R dr ′ j,β then b(i,α,r),(j,β,r′) = 0 where b(i,α,r),(j,β,r′) is the ((i, α, r), (j, β, r′))-th entry after all the column operations are carried out. Proof. Part a(i): It follows from equation (2.1), for b(j,β,r′ 1 ,r′ 2 ),(i,α,r1,r2) = a(j,β,r′ 1 ,r′ 2 ),(i,α,r1,r2) − ∑ d r′′ 1 ,r′′ 2 l,γ >d r1,r2 i,α >d r′ 1 ,r′ 2 j,β b(j,β,r′ 1 ,r′ 2 ),(l,γ,r′′ 1 ,r′′ 2 ) = a(i,α,r1,r2),(i,α,r1,r2) − ∑ d r′′ 1 ,r′′ 2 l,γ >d r1,r2 i,α b(l,γ,r′′ 1 ,r′′ 2 ),(l,γ,r′′ 1 ,r′′ 2 ) (by Lemma 2.1 and induction) = b(i,α,r1,r2),(i,α,r1,r2) We prove the result by induction on (i, α, r1, r2). “adm-n2” — 2018/7/24 — 22:32 — page 219 — #57 N. Karimilla Bi, M. Parvathi 219 Let d 0,0 i,α be coarser than d r′ 1 ,r′ 2 j,β , by lemma 2.1 we have, l(d0,0i,α.d 0,0 i,α) = l(d0,0i,α.d r′ 1 ,r′ 2 j,β ) = 0 (2.2) for any diagram d r′′ 1 ,r′′ 2 l,γ which is coarser than d r′ 1 ,r′ 2 j,β and d r′′ 1 ,r′′ 2 l,γ but not coarser than d 0,1 i,α, we have b(i,α,0,1),(l,γ,r′ 1 ,r′ 2 ) = 0. Thus, by applying the column operations L(j,β,r′ 1 ,r′ 2 ) → L(j,β,r′ 1 ,r′ 2 ) − L((i,α,0,1) and equation (2.1) ((i, α, 0, 0), (j, β, r′1, r ′ 2))-entry becomes b(i,α,0,0),(j,β,r′ 1 ,r′ 2 ) = a(i,α,0,0),(j,β,r′ 1 ,r′ 2 ) − a(i,α,0,0),(i,α,0,0) = 1− 1 = 0 by equation (2.2). (ii) Suppose d 0,1 i,α and d 0,1 j,β such that ♯p(d0,1i,α.d 0,1 j,β) = 2s1 + s2 then by Lemma 2.1 l(d0,1i,α.d 0,1 r1,r2) = 0 then there exists a unique diagram d 0,0 k,δ coarser than both d 0,1 i,α and d 0,1 j,β such that l(d0,0k,δ.d 0,0 k,δ) = l(d0,0k,δ.d 0,1 i,α) = l(d0,0k,δ.d 0,1 j,β) = 0. Thus, when the column operation L(j,β,0,1) → L(j,β,0,1)−L(k,δ,0,0) is carried out, b(i,α,0,1),(j,β,0,1) = a(i,α,0,1),(j,β,0,1) − a(i,α,0,1),(k,δ,0,0) = 1− 1 = 0. (2.3) Part a(ii): In general, Let d r1,r2 i,α be not coarser than d r′ 1 ,r′ 2 j,β such that l(dr1,r2i,α .d r′ 1 ,r′ 2 j,β ) > 0. Then by Lemma 2.2 there is a unique diagram d r′′ 1 ,r′′ 2 k,δ coarser than both d r1,r2 i,α and d r′ 1 ,r′ 2 j,β such that l(d r′′ 1 ,r′′ 2 k,δ .d r′′ 1 ,r′′ 2 k,δ ) = l(d r′′ 1 ,r′′ 2 k,δ .d r1,r2 i,α ) = l(d r′′ 1 ,r′′ 2 k,δ .d r′ 1 ,r′ 2 j,β ) When the column operations are carried out inductively, b(i,α,r1,r2),(j,β,r′1,r ′ 2 ) = a(i,α,r1,r2),(j,β,r′1,r ′ 2 ) − ∑ d r′′′ 1 ,r′′′ 2 l,γ >d r1,r2 i,α d r′′′ 1 ,r′′′ 2 l,γ >d r′ 1 ,r′ 2 j,β b(i,α,r1,r2),(l,γ,r′′′1 ,r′′′ 2 ) − ∑ d r′′′′ 1 ,r′′′′ 2 k′,δ′ >d r′ 1 ,r′ 2 j,β d r′′′′ 1 ,r′′′′ 2 k′,δ′ 6>d r1,r2 i,α b(i,α,r1,r2),(k′,δ′,r′′′′1 ,r′′′′ 2 ) “adm-n2” — 2018/7/24 — 22:32 — page 220 — #58 220 Gram matrices and Stirling numbers By induction hypothesis, each entry in the second summation becomes zero. Thus, we have b(i,α,r1,r2),(j,β,r′1,r ′ 2 ) = a(i,α,r1,r2),(j,β,r′1,r ′ 2 ) − ∑ d r′′ 1 ,r′′ 2 l,γ >d r1,r2 i,α d r′′ 1 ,r′′ 2 l,γ >d r′ 1 ,r′ 2 j,β b(i,α,r1,r2),(l,γ,r′′1 ,r ′′ 2 ). Also, by induction, b(i,α,r1,r2),(i′,α′,r′′′′ 1 ,r′′′′ 2 ) = b(i′,α′,r′′′′ 1 ,r′′′′ 2 ),(i′,α′,r′′′′ 1 ,r′′′′ 2 ). (2.4) Thus, b(i,α,r1,r2),(j,β,r′1,r ′ 2 ) = (a(i,α,r1,r2),(j,β,r′1,r′2) − ∑ d r′′′ 1 ,r′′′ 2 l,γ >d r1,r2 i,α d r′′′ 1 ,r′′′ 2 l,γ >d r′ 1 ,r′ 2 j,β d r′′′ 1 ,r′′′ 2 l,γ 6=d r′′ 1 ,r′′ 2 k,δ b(i,α,r1,r2),(l,γ,r′′′1 ,r′′′ 2 ))− b(k,δ,r′′ 1 ,r′′ 2 ),(k,δ,r′′ 1 ,r′′ 2 ) = b(k,δ,r′′ 1 ,r′′ 2 ),(k,δ,r′′ 1 ,r′′ 2 ) − b(k,δ,r′′ 1 ,r′′ 2 ),(k,δ,r′′ 1 ,r′′ 2 ) = b(k,δ,r′′ 1 ,r′′ 2 ),(k,δ,r′′ 1 ,r′′ 2 ) − b(k,δ,r′′ 1 ,r′′ 2 ),(k,δ,r′′ 1 ,r′′ 2 ) (by equation (2.4)) = 0 Thus, ((i, α, , r1, r2), (j, β, r ′ 1, r ′ 2))-entry becomes zero after applying the column operations when d r1,r2 i,α is not coarser than d r′ 1 ,r′ 2 j,β such that l(dr1,r2i,α .d r′ 1 ,r′ 2 j,β ) > 0. Also, b(j,β,r′ 1 ,r′ 2 ),(i,α,r1,r2) = a(j,β,r′ 1 ,r′ 2 ),(i,α,r1,r2) − ∑ d r′′ 1 ,r′′ 2 l,γ >d r1,r2 i,α d r′′ 1 ,r′′ 2 l,γ >d r′ 1 ,r′ 2 j,β b(j,β,r′ 1 ,r′ 2 ),(l,γ,r′′ 1 ,r′′ 2 ). since b(j,β,r′ 1 ,r′ 2 ),(k,δ,r′′′ 1 ,r′′′ 2 ) becomes zero by induction for all d r′′′ 1 ,r′′′ 2 k,δ coarser than d r1,r2 i,α and not coarser than d r′ 1 ,r′ 2 j,β arguing as in the proof of (ii), b(j,β,r′ 1 ,r′ 2 ),(i,α,r1,r2) = 0. Part a(iii): In general, let d r1,r2 i,α be coarser than d r′ 1 ,r′ 2 j,β , by Lemma 2.1 l(dr1,r2i,α .d r1,r2 i,α ) = l(dr1,r2i,α .d r′ 1 ,r′ 2 j,β ) = 2r1 + r2. “adm-n2” — 2018/7/24 — 22:32 — page 221 — #59 N. Karimilla Bi, M. Parvathi 221 By induction hypothesis, b(i,α,r1,r2),(j,β,r′1,r ′ 2 ) = a(i,α,r1,r2),(j,β,r′1,r ′ 2 ) − ∑ d r′′ 1 ,r′′ 2 l,γ >d i,α r1,r2 d r′′ 1 ,r′′ 2 l,γ >d r′ 1 ,r′ 2 j,β b(i,α,r1,r2),(l,γ,r′′1 ,r ′′ 2 ) (2.5) and b(i,α,r1,r2),(i,α,r1,r2) = a(i,α,r1,r2),(i,α,r1,r2) − ∑ d r′′ 1 ,r′′ 2 l,γ >d r1,r2 i,α b(i,α,r1,r2),(l,γ,r′′1 ,r ′′ 2 ) (2.6) Thus, when the column operation L(j,β,r′ 1 ,r′ 2 ) → L(j,β,r′ 1 ,r′ 2 ) − L(i,α,r1,r2) is carried out the ((i, α, r1, r2), (j, β, r ′ 1, r ′ 2))-th entry of the block matrix A2r1+r2,2r′1+r′ 2 becomes zero. That is, b(i,α,r1,r2),(j,β,r′1,r′2) = 0. The proof of (b) is similar to the proof of (a). Theorem 2.4. (a) After applying the column operations the diagonal entry x2r1+r2 in the block matrix A2r1+r2,2r1+r2 for 0 6 r1 + r2 6 k − s1 − s2 and the block matrix −→ A 2r1+r2,2r1+r2 for 0 6 r1 + r2 6 k − s1 − s2 − 1 of the algebra of Z2-relations and signed partition algebras respectively are replaced by (i) r1−1∏ j=0 [x2 − x− 2(s1 + j)] r2−1∏ l=0 [x− (s2 + l)] if r1 > 1 and r2 > 1, (ii) r2−1∏ j=0 [x− (s2 + j)] if r1 = 0 and r2 6= 0, (iii) r1−1∏ j=0 [x2 − x− 2(s1 + j)] if r1 6= 0 and r2 = 0. Also, the diagonal elements in the block matrix A2r1+r2,2r1+r2 and −→ A 2r1+r2,2r1+r2 are the same. (b) After applying the column operations the diagonal entry xr in the block matrix Ar,r for 0 6 r 6 k is replaced by r−1∏ j=0 [x− (s+ j)] if r > 1 and 1 if r = 0. Also, the diagonal elements in the block matrix Ar,r are the same. Proof. Part (a)(i): The proof is by induction on the number of horizontal edges. “adm-n2” — 2018/7/24 — 22:32 — page 222 — #60 222 Gram matrices and Stirling numbers Let dr1,r2i,α be any diagram corresponding to the diagonal entry x2r1+r2 in block matrix A2r1+r2,2r1+r2 having 2s1 + s2 number of through classes and r1 pairs of {e}-horizontal edges and r2 number of Z2-horizontal edges. After applying column operations as mentioned earlier to eliminate the entries which lie above corresponding to the diagrams coarser than d r1,r2 i,α , then by Lemma 2.1 and induction the diagonal entry x2r1+r2 is replaced as x2r1+r2 − ∑ 06j6r1 −r26j′6r1 −2j+j′<0 B s1,s2 2r1+r2,2[r1−j]+r2+j′ r1−j−1∏ l=0 [x2 − x− 2(s1 + l)] × r2+j′−1∏ f=0 [x− (s2 + f)] (2.7) where B s1,s2 2r1+r2,2p1+p2 gives the number of diagrams which has p1 pairs of {e} horizontal edges and p2 number of Z2 horizontal edges which lie above and coarser than d r1,r2 i,α . Fix s and put H2r1+r2,s = − ∑ 06j6r1 −r26j′6r1 −2j+j′<0 and m−2j+j′>0 (−1)2j−j′B s1,s2 2r1+r2,2[r1−j]+r2+j′ C2[r1−j]+r2+j′,s (2.8) where C2r′ 1 +r′ 2 ,s denote the coefficient of xs in r′ 1 −1∏ j=0 [x2 − x− 2(s1 + j)] r′ 2 −1∏ l=0 [x− (s2 − l)] where m = 2r1 + r2 − s. We shall claim that, H2r1+r2,s = (−1)mC2r1+r2−1,s. We shall prove this by using induction on 2r1 + r2. H2r1+r2,s = − ∑ 06j6r1 −r26j′6r1 −2j+j′<0 and m−2j+j′>0 (−1)2j−j′B s1,s2 2r1+r2,2[r1−j]+r2+j′ C2[r1−j]+r2+j′,s where m = 2r1 + r2 − s. “adm-n2” — 2018/7/24 — 22:32 — page 223 — #61 N. Karimilla Bi, M. Parvathi 223 By using Lemma 3.16 in [6] and induction hypothesis, equation (2.8) becomes, H2r1+r2,s = − ∑ 06j6r1 −r26j′6r1 −2j+j′<0 and m−2j+j′>0 (−1)2j−j′ { B s1,s2 2r1+r2−1,2[r1−j]+r2+j′−1 + (s2 + r2 + j′)Bs1,s2 2r1+r2−1,2[r1−j]+r2+j′ } × { C2[r1−j]+r2+j′−1,s−1 + (s2 + r2 + j′ − 1)C2[r1−j]+r2+j′−1,s } The equation (2.8) can be rewritten as follows: H2r1+r2,s = − ∑ 06j6r1 −r26j′6r1 −2j+j′<0 and m−2j+j′>0 (−1)2j−j′B s1,s2 2r1+r2−1,2[r1−j]+r2+j′−1C2[r1−j]+r2+j′−1,s−1 − ∑ 06j6r1 −r26j′6r1 −2j+j′<0 and m−2j+j′>0 (−1)2j−j′(s2 + r2 + j′ − 1) ×B s1,s2 2r1+r2−1,2[r1−j]+r2+j′−1C2[r1−j]+r2+j′−1,s − ∑ 06j6r1 −r26j′6r1 −2j+j′<0 and m−2j+j′>0 (−1)2j−j′(s2 + r2 + j′) ×B s1,s2 2r1+r2−1,2[r1−j]+r2+j′ C2[r1−j]+r2+j′,s = H2r1+r2−1,s−1 + (−1)m(s2 + r2 − 1)C2r1+r2−1,s (by canceling common terms) = (−1)mC2r1+r2−1,s−1 + (−1)m(s2 + r2 − 1)C2r1+r2−1,s (by induction) Thus, equation (2.8) reduces to H2r1+r2,s = (−1)mC2r1+r2−1,s−1 + (−1)m(s2 + r2 − 1)C2r1+r2−1,s = (−1)mC2r1+r2,s where C2r1+r2,s = C2r1+r2−1,s−1 + (s2 + r2 − 1)C2r1+r2−1,s. The same proof works for the diagonal element in the block matrix −→ A 2r1+r2,2r1+r2 for 0 6 r1+r2 6 k−s1−s2−1 in signed partition algebras. “adm-n2” — 2018/7/24 — 22:32 — page 224 — #62 224 Gram matrices and Stirling numbers Part (a)(iii): This part can be proved in similar fashion as that of (a)(i) by using Lemma 3.17 in [6] and C2r1,s = (−1)mC2(r1−1),s−2 + (−1)mC2(r1−1),s−1 − (−1)m2(s1 + r1 − 1)C2(r1−1),s. The proof of (b) is same as that of the proof of (a). Lemma 2.5. Let dr1,r2i,α , d r′ 1 ,r′ 2 j,β ∈ J2k 2s1+s2 and d r1,r2 i,α , d r′ 1 ,r′ 2 j,β ∈ −→ J 2k 2s1+s2 . The ((i, α, r1, r2), (j, β, r ′ 1, r ′ 2))-entry of the Gram matrices Gk 2s1+s2 of the alge- bra of Z2-relations and −→ Gk 2s1+s2 of the signed partition algebras remains zero even after applying column operations inductively if the Z2-horizontal edge of dr1,r2i,α coincides with the {e}-through class of d r′ 1 ,r′ 2 j,β and vice versa. Proof. The proof follows from Definition 3.7 in [6] and there is no diagram in common which is coarser than both d r1,r2 i,α , d r′ 1 ,r′ 2 j,β ∈ J2r1+r2 2s1+s2 . Remark 2.6. (a) Let d r1,r2 i,α , d r′ 1 ,r′ 2 j,β ∈ J2k 2s1+s2 such that ♯p(dr1,r2i,α .d r′ 1 ,r′ 2 j,β ) < 2s1 + s2. Place d r1,r2 i,α above d r′ 1 ,r′ 2 j,β . Choose sub diagrams dr1−t′ 1 ,r2−t′ 2 ∈ J 2f 2(s1−t1)+s2−t2 of d r1,r2 i,α and dr ′ 1 −t′′ 1 ,r′ 2 −t′′ 2 ∈ J 2f 2(s1−t1)+s2−t2 of d r′ 1 ,r′ 2 j,β such that l(dr1−t′ 1 ,r2−t′ 2 .dr ′ 1 −t′′ 1 ,r′ 2 −t′′ 2 ) > 0 with ♯p((dr1,r2i,α \ dr1−t′ 1 ,r2−t′ 2).(d r′ 1 ,r′ 2 j,β \ dr ′ 1 −t′′ 1 ,r′ 2 −t′′ 2 )) < 2t1 + t2. For the sake of convenience, we shall write d r1,r2 i,α = dr1−t′ 1 ,r2−t′ 2 ⊗ d l1−f l1−f and d r′ 1 ,r′ 2 j,β = dr1−t′′ 1 ,r2−t′′ 2 ⊗ d l2−f l2−f where d l1−f l1−f = d r1,r2 i,α \ dr ′ 1 −t′′ 1 ,r′ 2 −t′′ 2 and d l2−f l2−f = d r′ 1 ,r′ 2 j,β \ dr ′ 1 −t′′ 1 ,r′ 2 −t′′ 2 . (b) Let Rdri,α , R dr ′ j,β ∈ Jk s such that ♯p(Rdri,α .R dr ′ j,β ) < 2. Place Rdri,α above Rdr ′ j,β . Choose sub diagrams Rdr−t′ ∈ J f s−t of Rdri,α and Rdr ′ −t′′ ∈J f s−t of Rdr ′ j,β such that l(Rdr−t′ .Rdr ′ −t′′ ) > 0 with ♯p((Rdri,α \Rdr−t′ ).(Rdr ′ j,β \Rdr ′ −t′′ )) < t. “adm-n2” — 2018/7/24 — 22:32 — page 225 — #63 N. Karimilla Bi, M. Parvathi 225 For the sake of convenience, we shall write Rdri,α = Rdr−t′ ⊗ d l1−f l1−f and R dr ′ j,β = Rdr−t′′ ⊗ d l2−f l2−f where d l1−f l1−f = Rdri,α \Rdr ′ −t′′ and d l2−f l2−f = R dr ′ j,β \Rdr ′ −t′′ . Notation 2.7. (a) Let d r1,r2 i,α , d r1,r2 j,β be as in Remark 2.6(a) such that ♯p(dr1,r2i,α .d r1,r2 j,β ) < 2s1 + s2, so that the ((i, α, r1, r2), (j, β, r1, r2))-entry of the block matrix A2r1+r2,2r1+r2 in algebra of Z2-relations is zero and 0 6 r1 + r2 6 k − s1 − s2. If t′1 = t′′1 = t1, t ′ 2 = t′′2 = t2, put d r1,r2 i,α = d l f 1 l f 1 ⊗ d l1−f l1−f and d r1,r2 j,β = d l f 2 l f 2 ⊗ d l2−f l2−f , where d l f 1 l f 1 (d l f 2 l f 2 ) is the sub diagram of dr1,r2i,α (dr1,r2j,β ), d l f 1 l f 1 , d l f 2 l f 2 ∈ J2t1+t2 2t1+t2 and every {e}-through class (Z2 − through class) of d l f 1 l f 1 is replaced by a {e}- horizontal edge (Z2 − horizontal edge) and vice versa. (b) Let dr1,r2i,α , d r1,r2 j,β be as in Remark 2.6(b) such that ♯p(dr1,r2i,α .d r1,r2 j,β ) < 2s1 + s2, so that the ((i, α, r1, r2), (j, β, r1, r2))-entry of the block matrix −→ A 2r1+r2,2r1+r2 in algebra of Z2-relations is zero and 0 6 r1 + r2 6 k − s1 − s2 − 1. If t′1 = t′′1 = t1, t ′ 2 = t′′2 = t2, put d r1,r2 i,α = d l f 1 l f 1 ⊗ d l1−f l1−f and d r1,r2 j,β = d l f 2 l f 2 ⊗ d l2−f l2−f , where d l f 1 l f 1 (d l f 2 l f 2 ) is the sub diagram of dr1,r2i,α (dr1,r2j,β ), d l f 1 l f 1 , d l f 2 l f 2 ∈ −→ J 2t1+t2 2t1+t2 and every {e}-through class (Z2 − through class) of d l f 1 l f 1 is replaced by a {e}- horizontal edge (Z2 − horizontal edge) and vice versa. (c) Let Rdri,α , R drj,β ∈ Jrs such that ♯p(Rdri,α .R drj,β ) < s, so that the ((i, α, r), (j, β, r))-entry of the block matrix Ar,r in the partition algebra is zero and 0 6 r 6 k − s. Put Rdri,α = dl1l1 ⊗ d l1−f l1−f and R drj,β = dl2l2 ⊗ d l2−f l2−f , where dl1l1(d l2 l2 ) is the sub diagram of Rdri,α(Rdrj,β ), dl1l1 , d l2 l2 ∈ Jtt and every through class of dl1l1 is replaced by a horizontal edge and vice versa. “adm-n2” — 2018/7/24 — 22:32 — page 226 — #64 226 Gram matrices and Stirling numbers Example 2.8. This example illustrates Notation 2.7. s.no 1. 2. d 2,0 i,(2,Φ,2,Φ) d 2,0 j,(2,Φ,2,Φ) d l f 1 l f 1 d l f 2 l f 2 d l1−f l1−f = d l2−f l2−f Lemma 2.9. Let (i, α, r1, r2) < (j, β, r′1, r ′ 2). (a) Let d r1,r2 i,α , d r′ 1 ,r′ 2 j,β ∈ J2k 2s1+s2 such that ♯p(dr1,r2i,α .d r′ 1 ,r′ 2 j,β ) < 2s1 + s2 with d r1,r2 i,α = dr1−t′ 1 ,r2−t′ 2 ⊗ d l1−f l1−f and d r′ 1 ,r′ 2 j,β = dr ′ 1 −t′′ 1 ,r′ 2 −t′′ 2 ⊗ d l2−f l2−f where dr1−t′ 1 ,r2−t′ 2 , dr ′ 1 −t′′ 1 ,r′ 2 −t′′ 2 are as in Remark 2.6(a). (b) Let d r1,r2 i,α , d r′ 1 ,r′ 2 j,β ∈ −→ J 2k 2s1+s2 such that ♯p(dr1,r2i,α .d r′ 1 ,r′ 2 j,β ) < 2s1 + s2 with d r1,r2 i,α = dr1−t′ 1 ,r2−t′ 2 ⊗ d l1−f l1−f and d r′ 1 ,r′ 2 j,β = dr ′ 1 −t′′ 1 ,r′ 2 −t′′ 2 ⊗ d l2−f l2−f where dr1−t′ 1 ,r2−t′ 2 , dr ′ 1 −t′′ 1 ,r′ 2 −t′′ 2 are as in Remark 2.6(a). Then b(i,α,r1,r2),(j,β,r′1,r ′ 2 ) = 0, if any one of the following conditions hold: (i) 2r1 + r2 < 2r′1 + r′2 or (ii) if 2r1 + r2 = 2r′1 + r′2 then r1 + r2 < r′1 + r′2 or (iii) t′′1 6= t1 or t′′2 6= t2 or (iv) 2r1 + r2 − (2t′1 + t′2) < 2r′1 + r2 − (2t′′1 + t′′2) (c) Let Rdri,α , R dr ′ j,β ∈ Jr ′ s such that ♯p(Rdri,α , R dr ′ j,β ) < s with Rdri,α = dr−t′ ⊗ Rdri,α \ dr−t′ and R dr ′ j,β = dr ′−t′′ ⊗ R dr ′ j,β \ dr ′−t′′ where dr−t′ ∈ Jt ′ t , d r′−t′′ ∈ Jt ′′ t , Rdri,α \ dr−t′ ∈ Jr−t′ s−t and R dr ′ j,β \ dr ′−t′′ ∈ Jr ′−t′′ s−t . Then b(i,α,r),(j,β,r′) = 0, if any one of the following conditions hold: (i) r′ < r (ii) t′′ 6= t (iii) r − t′ < r′ − t′′ Proof. Part (a): The proof is by induction on the conditions (i) 2r1 + r2 < 2r′1 + r′2 or (ii) if 2r1 + r2 = 2r′1 + r′2 then r1 + r2 < r′1 + r′2 or (iii) t′′1 6= t1 or t′′2 6= t2 or “adm-n2” — 2018/7/24 — 22:32 — page 227 — #65 N. Karimilla Bi, M. Parvathi 227 (iv) 2r1 + r2 − (2t′1 + t′2) < 2r′1 + r2 − (2t′′1 + t′′2) Since ♯p(dr1,r2i,α .d r′ 1 ,r′ 2 j,β ) < 2s1+s2 which implies that a(i,α,r1,r2),(j,β,r′1,r′2) = 0. After applying column operations inductively we get, b(i,α,r1,r2),(j,β,r′1,r ′ 2 ) = − ∑ d r′′ 1 ,r′′ 2 l,γ >d r1,r2 i,α d r′′ 1 ,r′′ 2 l,γ >d r′ 1 ,r′ 2 j,β b(l,γ,r′′ 1 ,r′′ 2 ),(l,γ,r′′ 1 ,r′′ 2 ) − ∑ d r′′ 1 ,r′′ 2 l,γ >d r′ 1 ,r′ 2 j,β d r′′ 1 ,r′′ 2 l,γ ≯d r1,r2 i,α b(i,α,r1,r2),(l,γ,r′′1 ,r ′′ 2 ) (2.9) Suppose that ♯p(d r′′ 1 ,r′′ 2 l,γ .d r1,r2 i,α ) = 2s1+s2 then by Lemma 2.2 and induction hypothesis, b(i,α,r1,r2),(l,γ,r′′1 ,r ′′ 2 ) = 0. Suppose that ♯p(d r′′ 1 ,r′′ 2 l,γ .d r1,r2 i,α ) < 2s1 + s2 then by using induction on any one of the conditions (i), (ii), (iii) and (iv) b(i,α,r1,r2),(l,γ,r′′1 ,r ′′ 2 ) = 0, By Lemma 2.2, there exists a unique diagram d l3−f l3−f coarser than both d l2−f l2−f and d l1−f l1−f and d l f 3 l f 3 ∈ J2t1+t2 2t1+t2 which is coarser than dr ′ 1 −t′′ 1 ,r′ 2 −t′′ 2 . Denote d l f 3 l f 3 ⊗ d l3−f l3−f by d r′′′′ 1 ,r′′′′ 2 k,δ . It is clear that, d r′′′′ 1 ,r′′′′ 2 k,δ is coarser than d r′ 1 ,r′ 2 j,β . Thus, after applying the column operations L(j,β,r′ 1 ,r′ 2 ) → L(j,β,r′ 1 ,r′ 2 ) − L(k,δ,r′′′′ 1 ,r′′′′ 2 ) we get, b(i,α,r1,r2),(j,β,r′1,r ′ 2 ) = − ∑ d r′′ 1 ,r′′ 2 l,γ >d r1,r2 i,α d r′′ 1 ,r′′ 2 l,γ >d r′′′′ 1 ,r′′′′ 2 k,δ b(l,γ,r′′′ 1 ,r′′′ 2 ),(l,γ,r′′′ 1 ,r′′′ 2 ) − ∑ d r′′ 1 ,r′′ 2 l,γ >d r′′′′ 1 ,r′′′′ 2 k,δ d r′′ 1 ,r′′ 2 l,γ ≯d r1,r2 i,α b(i,α,r1,r2),(l,γ,r′′1 ,r ′′ 2 ) − b(i,α,r1,r2),(k,δ,r′′′′1 ,r′′′′ 2 ) = b(i,α,r1,r2),(k,δ,r′′′′1 ,r′′′′ 2 ) − b(i,α,r1,r2),(k,δ,r′′′′1 ,r′′′′ 2 ) = 0. The proof of (b) and (c) are same as that of the proof of (a). “adm-n2” — 2018/7/24 — 22:32 — page 228 — #66 228 Gram matrices and Stirling numbers Notation 2.10. Put, (i) φ s1,s2 2r1+r2 (x) = r1−1∏ j=0 [x2−x− 2(s1+ j)] r2−1∏ l=0 [x− (s2+ l)], r1 > 1, r2 > 1. (ii) φ s1,s2 2r1+0(x) = r1−1∏ j=0 [x2 − x− 2(s1 + j)], r2 = 0. (iii) φ s1,s2 2.0+r2 (x) = r2−1∏ l=0 [x− (s2 + l)], r1 = 0. (iv) φ s1,s2 0+0 (x) = 1 and φ s1,s2 2r1+r2 (x) = 0 if any one of r1, r2 < 0. (v) φs r(x) = r−1∏ l=0 [x− (s+ l)], r > 1 (vi) φs 0(x) = 1 and φs r = 0 if r < 0. Now, we derive the following relation between the polynomials which are needed in the following Lemmas. Lemma 2.11. We have (i) φ s1+t,s2 2(r1−t)+r2 (x) = φ s1−t,s2 2(r1−t)+r2 (x) − 2t∑ m=1 2tCmr1−tCm2mm!φs1+t,s2 2(r1−t−m)+r2 (x). (ii) φ s1,s2+t 2r1+r2−t(x) = φ s1,s2−t 2r1+r2−t(x)− 2t∑ m=1 2tCmr2−tCmm!φs1,s2+t 2r1+r2−t−m(x). (iii) In general, φ s1+t1,s2+t2 2(r1−t1)+r2−t2 (x) = φ s1−t1,s2−t2 2(r1−t1)+r2−t2 (x) − 2t1∑ k=1 2t1Ck(r1 − t1)Ck2 kk!φs1+t1,s2−t2 2(r1−t1−k)+r2−t2 (x) − 2t2∑ k′=1 2t2Ck′(r2 − t2)Ck′k ′!φs1−t1,s2+t2 2(r1−t1)+r2−t2−k′ (x) − 2t1∑ k=1 2t2∑ k′=1 2t1Ck(r1 − t1)Ck2 kk!2t2Ck′(r2 − t2)Ck′k ′! × φ s1+t1,s2+t2 2(r1−t1−k)+r2−t2−k′ (x) where φ s1+t,s2 2(r1−t)+r2 (x) = r1−t−1∏ l=0 [x2 − x− 2(s1 + t+ l)] r2−1∏ l′=0 [x− (s2 + l′)] “adm-n2” — 2018/7/24 — 22:32 — page 229 — #67 N. Karimilla Bi, M. Parvathi 229 and φ s1,s2+t 2r1+r2−t(x) = r1−1∏ l=0 [x2 − x− 2(s1 + l)] r2−t−1∏ l′=0 [x− (s2 + t+ l′)]. Proof. Part (i): We shall prove this by using induction on r1 − t and r2. Consider φ s1−t,s2 2(r1−t)+r2 (x)− 2t∑ m=1 2tCm(r1−t)Cm2mm!φs1+t,s2 2[r1−t−m]+r2 (x) (2.10) = φ s1−t,s2 2(r1−t−1)+r2 (x)(x2 − x− 2(s1 + r1 − 2t− 1)) − 2t∑ m=1 2tCm(r1−t)Cm2mm!φs1+t,s2 2(r1−t−m)+r2 (x) = (φs1−t,s2 2(r1−t−1)+r2 (x) + 2t∑ m=1 2tCm(r1−t−1)Cm2mm!φs1+t,s2 2(r1−t−m−1)+r2 (x)) (x2 − x− 2(s1 + r1 − 2t− 1))− 2t∑ m=1 2tCm(r1−t)Cm2mm!φs1+t,s2 2(r1−t−m)+r2 (x) (by induction) = (φs1−t,s2 2(r1−t−1)+r2 (x) + 2t∑ m=1 2tCm(r1−t−1)Cm2mm!φs1+t,s2 2(r1−t−m−1)+r2 (x)) × (x2 − x− 2(s1 + r1 − 2t− 1)) − 2t∑ m=1 2tCm((r1−t−1)Cm + r1−t−1Cm−1)2 mm!φs1+t,s2 2(r1−t−m−1)+r2 (x) × (x2 − x− 2(s1 + r1 −m− 1)) = φ s1+t,s2 2(r1−t−1)+r2 (x)(x2 − x− 2(s1 + r1 − 2t− 1)) − 2t∑ m=1 2tCm(r1−t−1)Cm−12 mm!φs1+t,s2 2(r1−t−m)+r2 (x) + 2t∑ m=1 2tCm(r1−t−1)Cm2mm!(4t− 2m)φs1+t,s2 2(r1−t−m−1)+r2 (x) = φ s1+t,s2 2(r1−t−1)+r2 (x)(x2 − x− 2(s1 + r1 − 2t− 1))− 4tφs1+t,s2 2(r1−t−1)+r2 (x) (by canceling the common terms) = φ s1+t,s2 2(r1−t−1)+r2 (x)(x2 − x− 2(s1 + r1 − 1)) = φ s1+t,s2 2(r1−t)+r2 (x) “adm-n2” — 2018/7/24 — 22:32 — page 230 — #68 230 Gram matrices and Stirling numbers Proof of (ii) is similar to the proof of (i) and proof of (iii) follows from (i) and (ii). Lemma 2.12. (a) After performing the column operations to eliminate the non-zero entries corresponding to the diagrams coarser than both d r1,r2 i,α and d r1,r2 j,α , the zero in the ((i, α, r1, r2), (j, β, r1, r2)) entry of the block matrix A2r1+r2,2r1+r2 for 0 6 r1 + r2 6 k − s1 − s2 in algebra of Z2-relations is replaced by −2t1t1!t2!x 2(r1−t1)+r2−t2 where d r1,r2 i,α and d r1,r2 j,β are as in Notation 2.7(a). (b) After performing the column operations to eliminate the non- zero entries corresponding to the diagrams coarser than both d r1,r2 i,α and d r1,r2 j,β , the zero in the ((i, , α, r1, r2), (j, β, r1, r2)) entry of the block matrix −→ A 2r1+r2,2r1+r2 for 0 6 r1, r2, r1+r2 6 k−s1−s2−1 in the signed partition algebra is replaced by −2t1t1!t2!x 2(r1−t1)+r2−t2 . where d r1,r2 i,α and d r1,r2 j,β are as in Notation 2.7(b). (c) After performing the column operations to eliminate the non-zero entries corresponding to the diagrams coarser than both Rdri,α and R drj,β , the zero in the ((i, α, r), (j, β, r)) entry of the block matrix Ar,r for 0 6 r 6 k−s in partition algebra is replaced by −t!xr−t. where Rdri,α and R drj,β are as in Notation 2.7(c). Proof. Part (a): We shall prove this by induction on t1 and t2. Case (i): Let t1 = 1 and t2 = 1. We know that the diagrams coarser than both d r1,r2 i,α and d r1,r2 j,β are obtained if and only if the pair of {e}-through classes and the pair of {e}-horizontal edges of d l f 1 l f 1 or d l f 2 l f 2 is connected by an {e}-horizontal edge which can be done in two ways and Z2 horizontal edge and Z2-through class of d l f 1 l f 1 or d l f 2 l f 2 is connected by a Z2-edge which can be done in one way. Also d l1−f l1−f and d l2−f l2−f have 2(r1 − 1) + r2 − 1 horizontal edges then after performing the column operations the zero in the ((i, α, r1, r2), (j, β, r1, r2))-entry of the block matrix A2r1+r2,2r1+r2 is replaced by −2 r1−1∑ l=0 r2−1+l∑ l′=0 B s1,s2 2(r1−1)+r2−1,2(r1−1−l)+r2−1+l′ φ s1,s2 2[r1−1−l]+r2−1+l′ (x) “adm-n2” — 2018/7/24 — 22:32 — page 231 — #69 N. Karimilla Bi, M. Parvathi 231 which is equal to − 2φs1,s2 2[r1−1]+r2−1(x) − 2 r1−1∑ l=1 r2−1+l∑ l′=1 B s1,s2 2(r1−1)+r2,2(r1−1−l)+r2−1+l′ φ s1,s2 2[r1−1−l]+r2−1+l′ (x) By Theorem 2.4 we know that, φ s1,s2 2[r1−1]+r2−1(x) = x2(r1−1)+r2−1 − r1−1∑ l=1 r2−1+l∑ l′=1 B s1,s2 2(r1−1)+r2−1,2(r1−1−l)+r2−1+l′ φ s1,s2 2[r1−1−l]+r2−1+l′ (x). (2.11) Substituting equation (2.11) in the above expression and canceling the common terms we get, −2x2(r1−1)+r2−1. In general, the diagrams coarser than both d r1,r2 i,α and d r1,r2 j,β are ob- tained if and only if t1 pairs of {e}-through classes (t2 number of (Z2)- through classes) and t1 pairs of {e}-horizontal edges (t2 number of (Z2)- horizontal edges) of d l f 1 l f 1 or d l f 2 l f 2 is connected by an {e}-horizontal edges((Z2)- horizontal edges) which can be done in 2t1t1!t2! ways. Also d l1−f l1−f and d l2−f l2−f have 2(r1 − t1) + r2 − t2 horizontal edges then after performing the column operations to eliminate the non-zero entries correspond- ing to the diagrams coarser than both d r1,r2 i,α and d r1,r2 j,α the zero in the ((i, α, r1, r2), (j, β, r1, r2))-entry of the block matrix A2r1+r2,2r1+r2 is re- placed by − 2t1t1!t2! r1−t1∑ l=0 r2−t2+l∑ l′=0 B s1,s2 2(r1−t1)+r2−t2,2(r1−t1−l)+r2−t2+l′ × φ s1,s2 2[r1−t1−l]+r2−t2+l′ (x) which is equal to − 2t1t1!t2!(φ s1,s2 2[r1−t1]+r2−t2 (x) − r1−t1∑ l=1 r2−t2+l∑ l′=1 B s1,s2 2(r1−t1)+r2−t2,2(r1−t1−l)+r2−t2+l′ φ s1,s2 2[r1−t1−l]+r2−t2+l′ (x)). “adm-n2” — 2018/7/24 — 22:32 — page 232 — #70 232 Gram matrices and Stirling numbers Substituting equation (2.11) in the above expression and canceling the common terms we get, −2t1t1!t2!x 2(r1−t1)+r2−t2 . The proof of (b) and (c) are similar to the proof of (a). Proposition 2.13. (a) For 0 6 r1 + r2 6 k − s1 − s2, after performing the column operations to eliminate the non-zero entries which lie above corresponding to the diagrams coarser than d r1,r2 j,β , then the ((i, α, r1, r2), (j, β, r1, r2))-entry of the block matrix A2r1+r2,2r1+r2 and (b) For 0 6 r1 + r2 6 k − s1 − s2 − 1, after performing the column operations to eliminate the non-zero entries which lie above corresponding to the diagrams coarser than d r1,r2 j,β , then the ((i, α, r1, r2), (j, β, r1, r2))- entry of the block matrix −→ A 2r1+r2,2r1+r2 for 0 6 r1 + r2, r1, r2 6 k − s1 − s2 − 1 are replaced as (i) (−1)t1+t2(t1)!(t2)!2 t1 r1−1∏ j=t1 [x2−x−2(s1+j)] r2−1∏ l=t2 [x−(s2+ l)] if r1 > 1 and r2 > 1, (ii) (−1)t2(t2)! r2−1∏ l=t2 [x− (s2 + l)] if r1 = 0 and r2 6= 0, (iii) (−1)t1(t1)!2 t1 r1−1∏ j=t1 [x2 − x− 2(s1 + j)] if r1 6= 0 and r2 = 0, where d r1,r2 j,β is as in Notation 2.7. (c) After performing the column operations to eliminate the non-zero entries which lie above corresponding to the diagrams coarser than R dr ′ j,β , then the ((i, α, r), (j, β, r))-entry is replaced by (−1)tt! r−1∏ j=t [x− (s+ l)]. where R drj,β is as in Notation 2.7. Proof. Part (a): We shall prove this by using induction on t1, t2, the number of horizontal edges and the index of the diagram (j, β, r1, r2). “adm-n2” — 2018/7/24 — 22:32 — page 233 — #71 N. Karimilla Bi, M. Parvathi 233 By Lemma 2.9 the ((i, α, r1, r2), (j, β, r1, r2)) entry b(i,α,r1,r2),(j,β,r1,r2) is given by b(i,α,r1,r2),(j,β,r1,r2) = − ∑ d r′′ 1 ,r′′ 2 l,γ >d r1,r2 i,α d r′′ 1 ,r′′ 2 l,γ >d r′ 1 ,r′ 2 j,β b(l,γ,r′′ 1 ,r′′ 2 ),(l,γ,r′′ 1 ,r′′ 2 ) − ∑ d r′′ 1 ,r′′ 2 l,γ >d r1,r2 j,β d r′′ 1 ,r′′ 2 l,γ ≯d r1,r2 i,α b(i,α,r1,r2),(l,γ,r′′1 ,r ′′ 2 ). (2.12) Case (i): Let t1 = 0, t2 = 1, r1 = 0, r2 = 1 and d l1−f l1−f and d l2−f l2−f have 2s1+s2−1 through classes and no horizontal edge. After applying column operations to eliminate the non-zero entries corresponding to the diagrams coarser than both d l1−f l1−f and d l2−f l2−f then by Lemma 2.12 and equation (2.12) the ((i, α, 0, 1), (j, β, 0, 1))-entry b(i,α,0,1),(j,β,0,1) of the block matrix A2×0+1,2×0+1 is given by b(i,α,0,1),(j,β,0,1) = (−1)1! . Since there is no diagram coarser than d 0,1 j,β alone. Case (ii): Let t1 = 1, t2 = 0, r1 = 1, r2 = 0 and d l1−f l1−f and d l2−f l2−f have 2(s1 − 1) + s2 through classes and no horizontal edge. After applying column operations to eliminate the non-zero entries corresponding to the diagrams coarser than both d 1,0 i,α and d 1,0 j,β then by Lemma 2.12 and equation (2.12) the ((i, α, 1, 0), (j, β, 1, 0))-entry b(i,α,1,0),(j,β,1,0) of the block matrix A2×1+0,2×1+0 is given by b(i,α,1,0),(j,β,1,0) = (−1)21! . Since there is no diagram coarser than d 1,0 j,β alone. In general, suppose that the diagrams d l1−f l1−f and d l2−f l2−f have 2(s1 − t1) + s2 − t2 through classes and have r1 − t1 pair of {e}-horizontal edges and r2 − t2 number of Z2-horizontal edges then after performing column operations to eliminate the coarser elements of dr1,r2i,α and d r1,r2 j,β having t′ pair of {e}-through classes ({e}-horizontal edges) with t′ < t, the 0 in the ((i, α, r1, r2), (j, β, r1, r2))-entry b(i,α,r1,r2),(j,β,r1,r2) of the block matrix A2r1+r2,2r1+r2 is replaced by −(t1)!(t2)!2 t1x2(r1−t1)+r2−t2 inductively. For, 0 6 f ′ 6 t1 and 0 6 f ′′ 6 t2, the number of diagrams obtained by joining f ′ pairs of {e} through classes (f ′′ numbers of Z2 through classes) “adm-n2” — 2018/7/24 — 22:32 — page 234 — #72 234 Gram matrices and Stirling numbers with f ′ pairs of {e}-horizontal edges(f ′′ numbers Z2 horizontal edges) in d l f 2 l f 2 is given by (t1Cf ′)2(t2Cf ′′)22f ′ f ′!f ′′!. The number of diagrams which are coarser than d r1,r2 j,β but not coarser than d r1,r2 i,α having (r1− t1− l)-pairs of {e}-horizontal edges and r2 − t2 − l′ number of Z2-horizontal edges is given by 2t1−2f ′∑ m=0 2t2−2f ′′∑ m′=0 (r1 − t1 − l +m)Cm(2t1 − 2f ′) × Cm2mm!(r2 − t2 − l′ +m′)Cm′(2t2 − 2f ′′)Cm′ × (m′)!(t1Cf ′)2f ′!2f ′ (t2Cf ′′)2f ′′! ×B s1−t1,s2−t2 2(r1−t1)+r2−t2,2(r1−t1−l+m)+r2−t2−l′+m′ . (2.13) Here (2.13) is obtained by choosing m pairs of {e}-horizontal edges (m′ number of Z2-horizontal edges) for every diagram coarser than d l2−f l2−f having r1− t1− (l−m) pairs of {e}-horizontal edges (r2− t2− (l′−m′) number of Z2-horizontal edges) and choose m pairs of {e}-connected components(m′ number of Z2-connected components) from d l f 2 l f 2 . Connecting the chosen m pairs of {e}-horizontal edges from d l2−f l2−f to the m pairs of {e}-connected components of d l f 2 l f 2 by {e}-horizontal edge will give 2mm!(m′)! number of diagrams having r1− t1− l pairs of {e}-horizontal edges. m and m′ cannot exceed 2t1 − 2f ′ and 2t2 − 2f ′′ respectively, since d l f 2 l f 2 has 2t1 − 2f ′-pairs of {e}-components and 2t2 − f ′′ number of Z2-components b(i,α,r1,r2),(j,β,r1,r2) = −2t1t1!t2!x 2(r1−t1)+r2−t2 − (−1)t1+t2(t1)!(t2)!2 t1 {r1−t1∑ l=0 r2−t2∑ l′=−l (l,l′) 6=(0,0) 2t1∑ m=0 2t2∑ m′=0 2t1Cm × (r1 − t1 − l +m)Cm2mm!2t2Cm′(r2 − t2 − l′ +m′)Cm′(m′)! ×B s1−t1,s2−t2 2(r1−t1)+r2−t2,2(r1−t1−l+m)+r2−t2−l′+m′φ s1+t1,s2+t2 2(r1−t1−l)+r2−t2−l′ (x) } − t1∑ f ′=0 t2∑ f ′′=0 (f ′,f ′′) 6=(0,0) (f ′,f ′′) 6=(t1,t2) r1−t1∑ l=0 r2−t2∑ l′=−l 2t1−2f ′∑ m=0 2t2−f ′′∑ m′=0 (t1Cf ′)22f ′ f ′!(t2Cf ′′)2f ′′! × (−1)t1−f ′ 2t1−f ′ (t1 − f ′)!(−1)t2−f ′′ (t2 − f ′′)!2(t1 − f ′) “adm-n2” — 2018/7/24 — 22:32 — page 235 — #73 N. Karimilla Bi, M. Parvathi 235 × Cm(r1 − t1 − l +m)Cm2mm!2(t2 − f ′′)Cm′(r2 − t2 − l′ +m′) × Cm′(m′)!Bs1−t1+f ′,s2−t2+f ′′ 2(r1−t1)+r2−t2,2(r1−t1−l+m)+r2−t2−l′+m′ × φ s1+t1−f ′,s2+t2−f ′′ 2(r1−t1−l)+r2−t2−l′ (x) = −2t1t1!t2!x 2(r1−t1)+r2−t2 − (−1)t1+t2(t1)!(t2)!2 t1 × {r1−t1∑ l=0 r2−t2∑ l′=−l (l,l′) 6=(0,0) 2t1∑ m=0 2t2∑ m′=0 2t1Cm(r1 − t1 − l +m)Cm2mm!2t2 × Cm′(r2 − t2 − l′ +m′)Cm′(m′)! ×B s1−t1,s2−t2 2(r1−t1)+r2−t2,2(r1−t1−l+m)+r2−t2−l′+m′φ s1+t1,s2+t2 2(r1−t1−l)+r2−t2−l′ (x) } − t1∑ f ′=0 t2∑ f ′′=0 (f ′,f ′′) 6=(0,0) (f ′,f ′′) 6=(t1,t2) (t1Cf ′)22f ′ f ′!(t2Cf ′′)2f ′′!(−1)t1−f ′ 2t1−f ′ (t1 − f ′)! × (−1)t2−f ′′ (t2 − f ′′)! {r1−t1∑ l=0 r2−t2∑ l′=−l 2t1−2f ′∑ m=0 2t2−f ′′∑ m′=0 2(t1 − f ′) × Cm(r1 − t1 − l +m)Cm2mm!2(t2 − f ′′)Cm′(r2 − t2 − l′ +m′) × Cm′(m′)!Bs1−t1+f ′,s2−t2+f ′′ 2(r1−t1)+r2−t2,2(r1−t1−l+m)+r2−t2−l′+m′ × φ s1+t1−f ′,s2+t2−f ′′ 2(r1−t1−l)+r2−t2−l′ (x)− φ s1+t1−f ′,s2+t2−f ′′ 2(r1−t1)+r2−t2 (x) } = −2t1t1!t2!x 2(r1−t1)+r2−t2 − (−1)t1+t2(t1)!(t2)!2 t1 × {r1−t1∑ l=0 r2−t2∑ l′=−l (l,l′) 6=(0,0) 2t1∑ m=0 2t2∑ m′=0 2t1Cm(r1 − t1 − l +m)Cm2mm!2t2 × Cm′(r2 − t2 − l′ +m′)Cm′(m′)! ×B s1−t1,s2−t2 2(r1−t1)+r2−t2,2(r1−t1−l+m)+r2−t2−l′+m′φ s1+t1,s2+t2 2(r1−t1−l)+r2−t2−l′ (x) } − t1∑ f ′=0 t2∑ f ′′=0 (t1Cf ′)2(−1)t1−f ′ 2f ′ f ′!(−1)t2−f ′′ (t2Cf ′′)2f ′′!2t1−f ′ × (t1 − f ′)!(t2 − f ′′)!x2(r1−t1)+r2−t2 + (−1)t1+t22t1t1!t2!x 2(r1−t1)+r2−t2 + 2t1t1!t2!x 2(r1−t1)+r2−t2 “adm-n2” — 2018/7/24 — 22:32 — page 236 — #74 236 Gram matrices and Stirling numbers = (−1)t1+t2(t1)!(t2)!2 t1 { x2(r1−t1)+r2−t2 − r1−t1∑ l=0 r2−t2∑ l′=−l (l,l′) 6=(0,0) 2t1∑ m=0 2t2∑ m′=0 2t1Cm(r1 − t1 − l +m)Cm2mm! × 2t2Cm′(r2 − t2 − l′ +m′)Cm′(m′)! ×B s1−t1,s2−t2 2(r1−t1)+r2−t2,2(r1−t1−l+m)+r2−t2−l′+m′φ s1+t1,s2+t2 2(r1−t1−l)+r2−t2−l′ (x) } expanding and using Lemma 2.12 we get, = (−1)t1+t2(t1)!(t2)!2 t1 { x2(r1−t1)+r2−t2 − r1−t1∑ l=0 r2−t2∑ l′=−l (l,l′) 6=(0,0) B s1−t1,s2−t2 2(r1−1)+r2−t2,2(r1−t1−l)+r2−t2−l′ φ s1−t1,s2−t2 2(r1−t1−l)+r2−t2−l′ (x) (putting m = 0,m′ = 0) + r1−t1∑ l=0 r2−t2∑ l′=−l (l,l′) 6=(0,0) 2t2∑ k′=1 2t2Ck′(r2 − t2 − l′)Ck′k ′! ×B s1−t1,s2−t2 2(r1−t1)+r2−t2,2(r1−t1−l)+r2−t2−l′ φ s1−t1,s2+t2 2(r1−t1−l)+r2−t2−l′−k′ (x) (2.14) − r1−t1∑ l=0 r2−t2∑ l′=−l (l,l′) 6=(0,0) 2t2∑ m′=1 2t2Cm′(r2 − t2 − l′ +m′)Cm′m′! ×B s1−t1,s2−t2 2(r1−t1)+r2−t2,2(r1−t1−l)+r2−t2−l′+m′φ s1−t1,s2+t2 2(r1−t1−l)+r2−t2−l′ (x) (2.15) + r1−t1∑ l=0 r2−t2∑ l′=−l (l,l′) 6=(0,0) 2t1∑ k=1 2t1Ck(r1 − t1 − l)Ck2 kk! ×B s1−t1,s2−t2 2(r1−t1)+r2−t2,2(r1−t1−l)+r2−t2−l′ φ s1+t1,s2−t2 2(r1−t1−l−k)+r2−t2−l′ (x) (2.16) − r1−t1∑ l=0 r2−t2∑ l′=−l (l,l′) 6=(0,0) 2t1∑ m=1 2t1Cm(r1 − t1 − l +m)Cm2mm! “adm-n2” — 2018/7/24 — 22:32 — page 237 — #75 N. Karimilla Bi, M. Parvathi 237 ×B s1−t1,s2−t2 2(r1−t1)+r2−t2,2(r1−t1−l+m)+r2−t2−l′ φ s1+t1,s2−t2 2(r1−t1−l)+r2−t2−l′ (x) (2.17) − r1−t1∑ l=0 r2−t2∑ l′=−l (l,l′) 6=(0,0) 2t1∑ k=1 2t2∑ k′=1 2t1Ck(r1−t1−l)Ck2 kk!2t2Ck′(r2 − t2 − l′)Ck′k ′! ×B s1−t1,s2−t2 2(r1−t1)+r2−t2,2(r1−t1−l)+r2−t2−l′ φ s1+t1,s2+t2 2(r1−t1−l−k)+r2−t2−l′−k′ (x) (2.18) − r1−t1∑ l=0 r2−t2∑ l′=−l (l,l′) 6=(0,0) 2t1∑ m=1 2t2∑ k′=1 2t1Cm(r1 − t1 − l +m)Cm2mm!2t2 × Ck′(r2 − t2 − l′)Ck′k ′!Bs1−t1,s2−t2 2(r1−t1)+r2−t2,2(r1−t1−l+m)+r2−t2−l′ × φ s1+t1,s2+t2 2(r1−t1−l)+r2−t2−l′−k′ (x) (2.19) + r1−t1∑ l=0 r2−t2∑ l′=−l (l,l′) 6=(0,0) 2t1∑ k=1 2t2∑ m′=1 2t1Ck(r1−t1−l)Ck2 kk!2t2Cm′(r2−t2−l′+m′) × Cm′m′!Bs1−t1,s2−t2 2(r1−t1)+r2−t2,2(r1−t1−l)+r2−t2−l′+m′ × φ s1+t1,s2+t2 2(r1−t1−l−k)+r2−t2−l′ (x) (2.20) + r1−t1∑ l=0 r2−t2∑ l′=−l (l,l′) 6=(0,0) 2t1∑ m=1 2t2∑ m′=1 2t1Cm(r1 − t1 − l +m)Cm2mm!2t2 × Cm′(r2 − t2 − l′ +m′)Cm′m′! ×B s1−t1,s2−t2 2(r1−t1)+r2−t2,2(r1−t1−l+m)+r2−t2−l′+m′φ s1+t1,s2+t2 2(r1−t1−l)+r2−t2−l′ (x) (2.21) Putting (l = 0, l′ = m′) in equation (2.15), (l = m, l′ = 0) in equation (2.17), (l = m, l′ = m′) in equation (2.21) and canceling the common terms , we get b(i,α,r1,r2),(j,β,r1,r2) = (−1)t1+t2(t1)!(t2)!2 t1 { φ s1−t1,s2−t2 2(r1−t1)+r2−t2 (x) − 2t1∑ m=1 2t1Cm(r1 − t1)Cm2mm!φs1+t1,s2−t2 2(r1−t1−m)+r2−t2 (x) “adm-n2” — 2018/7/24 — 22:32 — page 238 — #76 238 Gram matrices and Stirling numbers − 2t2∑ m′=1 2t2Cm′(r2 − t2)Cm′m′!φs1−t1,s2+t2 2(r1−t1)+r2−t2−m′(x) − 2t1∑ m=1 2t2∑ m′=1 2t1Cm(r1 − t1)Cm2mm!2t2Cm′(r2 − t2)Cm′m′! × φ s1+t1,s2+t2 2(r1−t1−m)+r2−t2−m′(x) } = (−1)t1+t2(t1)!(t2)!2 t1φ s1+t1,s2+t2 2(r1−t1)+r2−t2 (x) Therefore the ((i, α, r1, r2), (j, β, r ′ 1, r ′ 2))-entry in the block matrix A2r1+r2,2r1+r2 is replaced as (−1)t1+t2(t1)!(t2)!2 t1 r1−1∏ l=t1 [x2 − x− 2(s1 + l)] r2−1∏ m=t2 [x− (s2 +m)]. Proof (b) and (c) are similar to the proof of (a). Now, we have the main theorem of this section. 2.2. Main theorem Theorem 2.14. (a) Let G̃k 2s1+s2 be the matrix similar to the Gram matrix Gk 2s1+s2 of the algebra of Z2-relations which is obtained after the column operations and the corresponding row operations on Gk 2s1+s2 . Then G̃k 2s1+s2 = ( ⊕ 06r1+r26k−s1−s2 Ã2r1+r2,2r1+r2 ) (b) Let −̃→ G k 2s1+s2 be the matrix similar to the Gram matrix −→ Gk 2s1+s2 of signed partition algebras which is obtained after the column operations and the corresponding row operations on −→ Gk 2s1+s2 . Then −̃→ G k 2s1+s2 = ( ⊕ 06r16k−s1−s2−1 06r2<k−s1−s2−1 2r1+r262k−2s1−2s2−1 −̃→ A 2r1+r2,2r1+r2 )⊕ −̃→ A ρ where “adm-n2” — 2018/7/24 — 22:32 — page 239 — #77 N. Karimilla Bi, M. Parvathi 239 (i) the diagonal element of Ã2r1+r2,2r1+r2 and −̃→ A 2r1+r2,2r1+r2 are given by 1. r1−1∏ j=0 [x2 − x− 2(s1 + j)] r2−1∏ l=0 [x− (s2 + l)] if r1 > 1, r2 > 1; 2. r1−1∏ j=0 [x2 − x− 2(s1 + j)] if r2 = 0; 3. r2−1∏ l=0 [x− (s2 + l)] if r1 = 0. (ii) The entry b(i,α,r1,r2),(j,β,r1,r2) of the block matrix Ã2r1+r2,2r1+r2 and −̃→ A 2r1+r2,2r1+r2 are replaced by 1. (−1)t1+t22t1(t1)!(t2)! r1−t1−1∏ j=0 [x2 − x− 2(s1 + t1 + j)] × r2−t2−1∏ l=0 [x− (s2 + t2 + l)] if r1 > 1, r2 > 1; 2. (−1)t12t1(t1)! r1−t1−1∏ j=0 [x2 − x− 2(s1 + t1 + j)] if r2 = 0; 3. (−1)t2(t2)! r2−t2−1∏ l=0 [x− (s2 + t2 + l)] if r1 = 0. whenever d r1,r2 i,α and d r1,r2 j,β is as in Remark 2.6(a), Notation 2.7 and Proposition 2.13. (iii) All other entries in the block matrix Ã2r1+r2,2r1+r2 and −̃→ A 2r1+r2,2r1+r2 are zero. The underlying partitions of the diagrams corresponding to the en- tries of the block matrix −̃→ A 2r1+r2,2r1+r2 are α = [α1] 1[α2] 2[α3] 3[α4] 4 with α1 = (α11, . . . , α1s1), α2 = (α21, . . . , α2s2), α3 = (α31, . . . , α3r1), α4 = (α41, . . . , α4r2) such that atleast one of α1i, α2j , α3l, α4m is greater than 1 for 1 6 i 6 s1, 1 6 j 6 s2, 1 6 l 6 r1 and 1 6 m 6 r2. Since the diagrams corresponding to the partition ρ=[ρ1] 1[ρ2] 2[ρ3] 3[ρ4] 4 with |ρ1i| = 1 ∀1 6 i 6 s1, |ρ2j | = 1 ∀1 6 j 6 s2, |ρ3m| = 0 ∀1 6 m 6 r1 and |ρ4l| = 1 ∀1 6 l 6 r2 does not belong to the signed partition algebra. “adm-n2” — 2018/7/24 — 22:32 — page 240 — #78 240 Gram matrices and Stirling numbers Thus the block corresponding to the diagrams whose underlying partition is ρ is studied separately. (b)′ Let −̃→ A ρ where the partition ρ is such that each ρ1i, ρ2j , ρ3l, ρ4m is equal to 1 for 1 6 i 6 s1, 1 6 j 6 s2, 1 6 l 6 r1 and 1 6 m 6 r2 and −̃→ A ρ is the block sub matrix corresponding to the diagrams whose underlying partition is ρ. (i) The ((i, ρ, r′1, r ′ 2), (i, ρ, r ′ 1, r ′ 2))-entry x2r ′ 1 +r′ 2 in the matrix −̃→ A ρ is replaced by r′ 1 −1∏ j=0 [x2 − x− 2(s1 + j)] l=r′ 2 −1∏ l=0 [x− (s2 + l)] + k−s1−s2−1∏ l=0 [x− (s2 + l)] where 1 6 r′1 6 k − s1 − s2 and r′2 = k − s1 − s2 − r′1. (ii) The zero in the ((i, ρ, r′1, r ′ 2), (j, ρ, r ′ 1, r ′ 2))-entry in the block matrix −̃→ A ρ is replaced by (−1)t1+t22t1(t1)!(t2)! r′ 1 −t1−1∏ j=0 [x2 − x− 2(s1 + t1 + j)] × r′ 2 −t2−1∏ l=0 [x− (s2 + l + t2)] + k−s1−s2−1∏ l=0 [x− (s2 + l)] where d r′ 1 ,r′ 2 i,ρ and d r′ 1 ,r′ 2 j,ρ are as in Remark 2.6(a), Notation 2.7 and Proposition 2.13 where 1 6 i, j 6 2k − 2s1 − 2s2 and i 6= j. (iii) If ♯p(d r′ 1 ,k−s1−s2−r′ 1 i,ρ .d r1,k−s1−s2−r1 j,ρ ) = 2s1 + s2 then the ((i, ρ, r′1, k− s1 − s2 − r′1), (j, ρ, r1, k − s1 − s2 − r1))-entry in the block matrix −̃→ A ρ is replaced by (−1)r1+r′ 1 k−s1−s2−1∏ l=0 [x− (s2 + l)] where 1 6 i, j 6 2k − 2s1 − 2s2 and i 6= j. (iv) All other entries in the block matrix −̃→ A ρ are zero. (c) Let G̃k s be the matrix similar to the Gram matrix Gk s which is obtained after the column operations and the row operations on Gk s . Then G̃k s = ( ⊕ 06r6k−s Ãr,r ) “adm-n2” — 2018/7/24 — 22:32 — page 241 — #79 N. Karimilla Bi, M. Parvathi 241 where (i) The diagonal element of Ãr,r is given by r−1∏ l=0 [x− (s+ l)] (ii) The entry b(i,α,r),(j,β,r) of the block matrix Ãr,r is replaced by (−1)t(t)! r−1∏ j=t [x− (s+ l)] whenever Rdri,α and R drj,β are as in Remark 2.6(b), Notation 2.7 and Proposition 2.13. (iii) All other entries in the block matrix −→ A r,r are zero. Proof. Part (a): Every entry x2r1+r2 in the sub block matrix Ã2r1+r2,2r′1+r′ 2 is also replaced by r1−1∏ j=0 [x2 − x− 2(s1 + j)] r2−1∏ l=0 [x− (s2 + l)] We continue to do the column operations for all the diagrams whose underlying partition is α where α = [α1] 1[α2] 2[α3][α4] 4 with α1 = (α11, . . . , α1s1), α2 = (α21, . . . , α2s2), α3 = (α31, . . . , α3r1), α4 = (α41, . . . , α4r2) such that at least one of α1i, α2j , α3l, α4m is greater than 1 and hence the above entry gets eliminated. Thus, from Lemmas 2.1 and 2.9 it follows that the rectangular sub matrix Ã2r1+r2,2r′1+r′ 2 with 2r1 + r2 6= 2r′1 + r′2 becomes zero after all the column operations are carried out. After applying the row operations corresponding to the column opera- tions performed in Lemmas 2.5, 2.9, Proposition 2.13, and Theorem 2.4, the Gram matrix Gk 2s1+s2 which is similar to a matrix G̃k 2s1+s2 decomposes as a direct sum of block matrices, i.e. G̃k 2s1+s2 = ( ⊕ 06r1+r26k−s1−s2 Ã2r1+r2,2r1+r2 ) where the diagonal element of Ã2r1+r2,2r1+r2 is given by r1−1∏ j=0 [x2 − x− 2(s1 + j)] r2−1∏ l=0 [x− (s2 + l)]. “adm-n2” — 2018/7/24 — 22:32 — page 242 — #80 242 Gram matrices and Stirling numbers Result (i) follows from Theorem 2.4(a), result (ii) follows from Proposition 2.13(a) and result (iii) follow from Lemmas 2.3, 2.5, and 2.9(a) respectively. Part (b)′: The column operations corresponding to the diagrams whose underlying partition is ρ where ρ = [ρ1] 1[ρ2] 2[ρ3] 3[ρ4] 4 where |ρ1i| = 1, ∀1 6 i 6 s1, |ρ2j | = 1∀1 6 j 6 s2, |ρ3m| = 0, ∀1 6 m 6 r1 and |ρ4l| = 1∀1 6 l 6 r2 such that s1 + s2 + r2 = k with s1 � k cannot be carried out for the block matrix −̃→ A ρ, since those diagrams do not belong to the signed partition algebra. Part (i): We prove the result by induction. Case (i): Let d 1,k−s1−s2−1 i,ρ be a diagram in −→ J 2.1+k−s1−s2−1 2s1+s2 , after the column operations the ((i, ρ, 1, k−s1−s2−1), (i, ρ, 1, k−s1−s2−1))-entry corresponding to the diagram d 1,k−s1−s2−1 i,ρ will be replaced by φ s1,s2 2.1+k−s1−s2−1(x) + φ s1,s2 2.0+k−s1−s2 (x) since the signed partition algebra does not contain diagrams with k−s1−s2 number of Z2-horizontal edges. Case (ii): Let d 2,k−s1−s2−2 i,ρ be a diagram in −→ J 2.2+k−s1−s2−2 2s1+s2 . After applying the column operations L(i,ρ,2,k−s1−s2−2) → L(i,ρ,2,k−s1−s2−2) − L(k,α,r1,r2) for all dr1,r2k,α where d r1,r2 k,α ∈ −→ J 2r1+r2 2s1+s2 with r1 + r2 + s1 + s2 6 k − 1, the ((i, ρ, 2, k− s1 − s2 − 2), (i, ρ, 2, k− s1 − s2 − 2))-entry will be replaced by φ s1,s2 2.2+k−s1−s2−2(x) + 2φs1,s2 2.1+k−s1−s2−1(x) + φ s1,s2 2.0+k−s1−s2 (x) Again applying the column operations inside the block matrix −̃→ A ρ, the ((i, ρ, 2, k − s1 − s2 − 2), (i, ρ, 2, k − s1 − s2 − 2))-entry becomes φ s1,s2 2.2+k−s1−s2−2(x) + 2φs1,s2 2.1+k−s1−s2−1(x) + φ s1,s2 2.0+k−s1−s2 (x) − 2 [ φ s1,s2 2.1+k−s1−s2−1(x) + φ s1,s2 2.0+k−s1−s2 (x) ] = φ s1,s2 2.2+k−s1−s2−2(x)− φ s1,s2 2.0+k−s1−s2 (x). After applying the row operations corresponding to the column oper- ations which is performed to obtain the above ((i, ρ, 2, k − s1 − s2 − 2), (i, ρ, 2, k− s1− s2− 2))-entry, the ((i, ρ, 2, k− s1− s2− 2), (i, ρ, 2, k− s1− s2 − 2))-entry further becomes φ s1,s2 2.2+k−s1−s2−2(x)− φ s1,s2 2.0+k−s1−s2 (x) + 2φs1,s2 2.0+k−s1−s2 (x) = φ s1,s2 2.2+k−s1−s2−2(x) + φ s1,s2 2.0+k−s1−s2 (x). “adm-n2” — 2018/7/24 — 22:32 — page 243 — #81 N. Karimilla Bi, M. Parvathi 243 In general, let d j,k−s1−s2−j i,ρ be a diagram in −→ J 2.j+k−s1−s2−j 2s1+s2 . After applying the column operations, by induction the ((i, ρ, j, k − s1 − s2 − j), (i, ρ, j, k − s1 − s2 − j))-entry of the matrix −̃→ A ρ becomes φ s1,s2 2j+k−s1−s2−j(x) + j−1∑ m=1 jCmφ s1,s2 2(j−m)+k−s1−s2−j+m (x) + φ s1,s2 2.0+k−s1−s2 (x) − j−1∑ m=1 jCm(φs1,s2 2(j−m)+k−s1−s2−j+m (x) + φ s1,s2 2.0+k−s1−s2 (x)) = φ s1,s2 2j+k−s1−s2−j(x)− j−1∑ m=1 jCmφ s1,s2 2.0+k−s1−s2 (x) + φ s1,s2 2.0+k−s1−s2 (x) After applying the row operations the ((i, ρ, j, k − s1 − s2 − j), (i, ρ, j, k − s1 − s2 − j))-entry further becomes φ s1,s2 2j+k−s1−s2−j(x)− j−1∑ m=1 jCmφ s1,s2 2.0+k−s1−s2 (x) + φ s1,s2 2.0+k−s1−s2 (x) + j−1∑ m=1 jCmφ s1,s2 2.0+k−s1−s2 (x) = φ s1,s2 2j+k−s1−s2−j(x) + φ s1,s2 2.0+k−s1−s2 (x) Thus, for a diagram d r′ 1 ,k−s1−s2−r′ 1 i,ρ ∈ −→ J 2r′ 1 +k−s1−s2−r′ 1 2s1+s2 the ((i, ρ, r′1, k− s1 − s2 − r′1), (i, ρ, r ′ 1, k − s1 − s2 − r′1))-entry is replaced as r′ 1 −1∏ j=0 [x2 − x− 2(s1 + j)] k−s1−s2−r′ 1 −1∏ l=0 [x− (s2 + l)] + k−s1−s2−1∏ l=0 [x− (s2 + l)]. Part (ii): The proof follows from Proposition 2.13(b) and it is similar to the Proof of (1), whenever d r′ 1 ,r′ 2 i,ρ and d r′ 1 ,r′ 2 j,ρ are as in Notation 2.7. Part (iii). Case (i): Let d1,k−s1−s2−1 i,ρ ∈ −→ J 2.1+k−s1−s2−1 2s1+s2 and d 2,k−s1−s2−2 j,ρ ∈ −→ J 2.2+k−s1−s2−2 2s1+s2 such that number of {e}-horizontal edges in d 1,k−s1−s2−1 i,ρ is greater than the number of {e}-horizontal edges in d 2,k−s1−s2−2 j,ρ then l(d1,k−s1−s2−1 i,ρ .d 2,k−s1−s2−2 j,ρ ) 6 2.1 + k − s1 − s2 − 1. There will be two diagrams say d 1,k−s1−s2−1 i′,ρ and d 1,k−s1−s2−1 i′′,ρ coarser than d 2,k−s1−s2−2 j,ρ . “adm-n2” — 2018/7/24 — 22:32 — page 244 — #82 244 Gram matrices and Stirling numbers Subcase (i): Suppose l(d1,k−s1−s2−1 i,ρ .d 2,k−s1−s2−2 j,ρ ) = 2.1+k−s1−s2−1 then a(i,ρ,1,k−s1−s2−1),(j,ρ,2,k−s1−s2−2) = φ s1,s2 2.1+k−s1−s2−1(x) + φ s1,s2 2.0+k−s1−s2 (x). Also, a(i,ρ,1,k−s1−s2−1),(i′,ρ,1,k−s1−s2−1) = φ s1,s2 2.1+k−s1−s2−1(x) + φ s1,s2 2.0+k−s1−s2 (x) and a(i,ρ,1,k−s1−s2−1),(i′′,ρ,1,k−s1−s2−1) = φ s1,s2 2.0+k−s1−s2 (x), or a(i,ρ,1,k−s1−s2−1),(i′,ρ,1,k−s1−s2−1) = φ s1,s2 2.0+k−s1−s2 (x) and a(i,ρ,1,k−s1−s2−1),(i′′,ρ,1,k−s1−s2−1) = φ s1,s2 2.1+k−s1−s2−1(x) + φ s1,s2 2.0+k−s1−s2 (x). After applying the column operations the ((i, ρ, 1, k − s1 − s2 − 1), (j, ρ, 2, k − s1 − s2 − 2))-entry in −̃→ A ρ becomes b(i,ρ,1,k−s1−s2−1),(j,ρ,2,k−s1−s2−2) = a(i,ρ,1,k−s1−s2−1),(j,ρ,2,k−s1−s2−2) − a(i,ρ,1,k−s1−s2−1),(i′,ρ,1,k−s1−s2−1) − a(i,ρ,1,k−s1−s2−1),(i′′,ρ,1,k−s1−s2−1) = −φ s1,s2 2.0+k−s1−s2 (x). Subcase (ii): Suppose l(d1,k−s1−s2−1 i,ρ .d 2,k−s1−s2−2 j,ρ ) < 2.1+k−s1−s2−1 then a(i,ρ,1,k−s1−s2−1),(j,ρ,2,k−s1−s2−2) = φ s1,s2 2.0+k−s1−s2 (x). Also, a(i,ρ,1,k−s1−s2−1),(i′,ρ,1,k−s1−s2−1) = φ s1,s2 2.0+k−s1−s2 (x) and a(i,ρ,1,k−s1−s2−1),(i′′,ρ,1,k−s1−s2−1) = φ s1,s2 2.0+k−s1−s2 (x) After applying the column operations the (i, ρ, 1, k−s1−s2−1), (j, ρ, 2, k− s1 − s2 − 2)-entry in −̃→ A ρ becomes b(i,ρ,1,k−s1−s2−1),(j,ρ,2,k−s1−s2−2) = a(i,ρ,1,k−s1−s2−1),(j,ρ,2,k−s1−s2−2) − a(i,ρ,1,k−s1−s2−1),(i′,ρ,1,k−s1−s2−1) − a(i,ρ,1,k−s1−s2−1),(i′′,ρ,1,k−s1−s2−1) = −φ s1,s2 2.0+k−s1−s2 (x) “adm-n2” — 2018/7/24 — 22:32 — page 245 — #83 N. Karimilla Bi, M. Parvathi 245 In general, let d r′ 1 ,k−s1−s2−r′ 1 i,ρ ∈ −→ J 2r′ 1 +k−s1−s2−r′ 1 2s1+s2 and d r1,k−s1−s2−r1 j,ρ ∈ −→ J 2r1+k−s1−s2−r1 2s1+s2 such that the number of {e}-horizontal edges in d r1,k−s1−s2−r1 j,ρ is strictly greater than the number of {e}-horizontal edges in d r′ 1 ,k−s1−s2−r′ 1 i,ρ then l(d r′ 1 ,k−s1−s2−r′ 1 i,ρ .d r1,k−s1−s2−r1 j,ρ ) 6 2r′1+k−s1−s2−r′1. After applying the column operations the ((i, ρ, r′1, k − s1 − s2 − r′1), (j, ρ, r1, k − s1 − s2 − r1))-entry becomes b(i,ρ,r′ 1 ,k−s1−s2−r′ 1 ),(j,ρ,r1,k−s1−s2−r1) × (r1−1∑ m=1 (−1)m−1 r1Cm − 1 ) φ s1,s2 2.0+k−s1−s2 (x) = (−1)r1+1φ s1,s2 2.0+k−s1−s2 (x) After applying row operations the ((i, ρ, r′1, k − s1 − s2 − r′1), (j, ρ, r1, k − s1 − s2 − r1))-entry further becomes b(i,ρ,r′ 1 ,k−s1−s2−r′ 1 ),(j,ρ,r1,k−s1−s2−r1) = ( r′ 1 −1∑ m=1 (−1)m−1 r′ 1 Cm − 1)(−1)r1+1φ s1,s2 2.0+k−s1−s2 (x) = (−1)r ′ 1 +r1φ s1,s2 2.0+k−s1−s2 (x) Thus, the ((i, ρ, r′1, k − s1 − s2 − r′1), (j, ρ, r1, k − s1 − s2 − r1))-entry of the block matrix −̃→ A ρ is given by (−1)r1+r′ 1φ s1,s2 2.0+k−s1−s2 (x). The proof of (b) and (c) is similar to the proof of (a). Remark 2.15. (a) G̃k 0+0 = ⊕ 06r1+r26k Ã2r1+r2,2r1+r2 . (b) −̃→ G k 0+0 = ⊕ 06r16k−1 06r26k−1 2r1+r262k−1 −̃→ A k 2r1+r2,2r1+r2 ⊕ −̃→ A ρ, where Ã2r1+r2,2r1+r2 and −̃→ A 2r1+r2,2r1+r2 are the diagonal block matrices whose diagonal entry is given by (i) r1−1∏ j=0 [x2 − x− 2j] r2−1∏ l=0 [x− l], r1 > 1, r2 > 1, (ii) r2−1∏ l=0 [x− l], r1 = 0, “adm-n2” — 2018/7/24 — 22:32 — page 246 — #84 246 Gram matrices and Stirling numbers (iii) r1−1∏ j=0 [x2 − x− 2j], r2 = 0. (b)′ Let −̃→ A ρ where the partition ρ is such that ρ1i = Φ, ρ2j = Φ, ρ3l = 1, ρ4m = 1 for 1 6 i 6 s1, 1 6 j 6 s2, 1 6 l 6 r1 and 1 6 m 6 r2 and −̃→ A ρ is the block sub matrix corresponding to the diagrams whose underlying partition is ρ. The ((i, ρ, r′1, r ′ 2), (i, ρ, r ′ 1, r ′ 2))-entry x2r ′ 1 +r′ 2 of the matrix −̃→ A ρ is re- placed by r′ 1 −1∏ j=0 [x2 − x− 2j] r′ 2 −1∏ l=0 [x− l] + r′ 1 +r′ 2 −1∏ l=0 [x− l]. (c) Gk 0 = ⊕ 06r6k Ãr,r r−1∏ l=0 [x− l]. 3. Semisimplicity of signed partition algebras Semisimplicity of the algebra of Z2-relations and partition algebras are already discussed in [15] and [2] respectively. In this paper, we give an alternate approach to show that the partition algebras and the algebra of Z2-relations are semisimple. We also study about the semisimplicity of signed partition algebras. Definition 3.1. [5] Let s = 2s1 + s2. For 0 6 s 6 2k and ((s, (s1, s2)), ((λ1, λ2), µ)) ∈ Λ′ (((s, (s1, s2)), ((λ1, λ2), µ)) ∈ −→ Λ ′), put λ = (λ1, λ2). The left cell module W [(s, (s1, s2)), ((λ1, λ2), µ)] ( −→ W [(s, (s1, s2)), ((λ1, λ2), µ)]) for the cellular algebra A [ AZ2 k ] (A [−→ AZ2 k ] ) is defined as follows: (i) W [(s, (s1, s2)), ((λ1, λ2), µ)] is a free A-module with basis { C mλ sλ m µ sµ S ∣∣∣S = (d, P ) ∈ Mk [(s, (s1, s2))] } “adm-n2” — 2018/7/24 — 22:32 — page 247 — #85 N. Karimilla Bi, M. Parvathi 247 and AZ2 k -action is defined on the basis element by a aC mλ sλ m µ sµ S ≡ ∑ (S′,s′)∈M ′k [( s,(s1,s2),((λ1,λ2),µ) )] C ra(S′,S)mλ s′ λ m µ s′µ S′ mod AZ2 k ( < ( s, (s1, s2), ((λ1, λ2), µ) )) , where (S,w) = ((d, P ), ((sλ1 , sλ2 ), sµ)), (S ′, s′) = ((d′, P ′), ((s′λ1 , s′λ2 ), s′µ)), ra(S ′, S) is as in 3(a)(i) and (b)(i) of Theorem 5.4. (ii) −→ W [(s, (s1, s2)), ((λ1, λ2), µ)] is a free A-module with basis { −→ C mλ sλ m µ sµ −→ S ∣∣∣−→S = (d, P ) ∈ −→ Mk [(s, (s1, s2))] } and −→ AZ2 k -action is defined on the basis element by −→a −→a −→ C mλ sλ m µ sµ S ≡ ∑ (S′,s′)∈ −→ M ′k [( s,(s1,s2),((λ1,λ2),µ) )] −→ C r−→a (S′,S)mλ s′ λ m µ s′µ S′ mod −→ AZ2 k ( < ( s, (s1, s2), ((λ1, λ2), µ) )) , where (S,w) = ((d, P ), ((sλ1 , sλ2 ), sµ)), (S ′, s′) = ((d′, P ′), ((s′λ1 , s′λ2 ), s′µ)), ra(S ′, S) is as in 3(a)(ii) and (b)(ii) of Theorem 5.4. Lemma 3.2 ([5]). (i) C mλ sλ,sλ m µ sµ,sµ S,S C mλ tλ,tλ m µ tµ,tµ T,T ≡ Φ1((S, s), (T, t))C mλ sλ,tλ m µ sµ,tµ S,T mod [ AZ2 k < (s, (s1, s2), ((λ1, λ2), µ) ] where Φ1((S, s), (T, t)) =    xl(P∨P ′)φλ δ1 (sλ, tλ)φ µ δ2 (sµ, tµ) when conditions (a) and (b) of Definition 4.6 in [5] hold, 0 otherwise. (ii) −→ C mλ sλ,sλ m µ sµ,sµ S,S −→ C mλ tλ,tλ m µ tµ,tµ T,T ≡ −→ Φ 1((S, s), (T, t))C mλ sλ,tλ m µ sµ,tµ S,T mod [−→ AZ2 k < (s, (s1, s2), ((λ1, λ2), µ) ] “adm-n2” — 2018/7/24 — 22:32 — page 248 — #86 248 Gram matrices and Stirling numbers where −→ Φ 1((S, s), (T, t)) =    xl(P∨P ′)φλ δ1 (sλ, tλ)φ µ δ2 (sµ, tµ) when conditions (a) and (b) of Definition 4.6 in [5] hold, 0 otherwise. Here (S, s) = ((d, P ), ((sλ1 , sλ2 ), sµ)), (T, t) = ((d′, P ′), ((tλ1 , tλ2 ), tµ)), and l(P ∨ P ′)(l(P ∨ P ′)) denotes the number of connected components in d′.d′′ excluding the union of all the connected components of P and P ′, mλ sλ,sλ δ1m λ tλ,tλ ≡ φλ δ1 (sλ, tλ)m λ s′ λ ,tλ mod H(< (λ1, λ2)),m µ sµ,sµδ2m µ tµ,tµ ≡ φ µ δ2 (sµ, tµ)m µ s′µ,tµ mod H ′(< µ) as in Lemma 1.7 in [1]. Definition 3.3 ([5]). For (s, (s1, s2), ((λ1, λ2), µ)) ∈ Λ′ (s, (s1, s2), ((λ1, λ2), µ)) ∈ −→ Λ ′ the bilinear map φ λ,µ s1,s2( −→ φ λ,µ s1,s2) is defined as (i) φλ,µ s1,s2 ( C mλ sλ,sλ m µ sµ,sµ (d,P ) , C mλ tλ,tλ m µ tµ,tµ (d′,P ′) ) = Φ1((S, s), (T, t)), (S, s), (T, t) ∈ M ′k [ s, (s1, s2), ((λ1, λ2), µ) ] ; (ii) −→ φ λ,µ s1,s2 (−→ C mλ sλ,sλ m µ sµ,sµ (d,P ) , −→ C mλ tλ,tλ m µ tµ,tµ (d′,P ′) ) = Φ1((S, s), (T, t)), (S, s), (T, t) ∈ −→ M ′k [ s, (s1, s2), ((λ1, λ2), µ) ] , where Φ1((S, s), (T, t))( −→ Φ 1((S, s), (T, t))) is as in Lemma 3.2. Put (i) G λ,µ 2s1+s2 = (Φ1((S, s), (T, t)))(S,s),(T,t)∈M ′k [ s,(s1,s2),((λ1,λ2),µ) ], where Φ1((S, s), (T, t)) =    xl(Pi∨Pj)φλ δ1 (sλ, tλ)φ µ δ2 (sµ, tµ) when conditions (a) and (b) of Definition 4.6 in [5] hold, 0 otherwise, where (S, s) = ((di, Pi), ((sλ1 , sλ2 ), sµ)), (T, t) = ((dj , Pj), ((tλ1 , tλ2 ), tµ)). “adm-n2” — 2018/7/24 — 22:32 — page 249 — #87 N. Karimilla Bi, M. Parvathi 249 (ii) −→ G λ,µ 2s1+s2 = ( −→ Φ 1((S, s), (T, t)))(S,s),(T,t)∈−→M ′k [ s,(s1,s2),((λ1,λ2),µ) ], where −→ Φ 1((S, s), (T, t)) =    xl(Pi∨Pj)φλ δ1 (sλ, tλ)φ µ δ2 (sµ, tµ) when conditions (a) and (b) of Definition 4.6 in [5] hold, 0 otherwise, where (S, s) = ((di, Pi), ((sλ1 , sλ2 ), sµ)), (T, t) = ((dj , Pj), ((tλ1 , tλ2 ), tµ)), and l(Pi ∨ Pj) denotes the number of connected components in d′.d′′ excluding the union of all the connected components of Pi and Pj , mλ sλ,sλ δ1m λ tλ,tλ ≡ φλ δ1 (sλ, tλ)m λ s′ λ ,tλ mod H(< (λ1, λ2)) and mµ sµ,sµδ2m µ tµ,tµ ≡ φ µ δ2 (sµ, tµ)m µ s′µ,tµ mod H ′(< µ) as in Lemma 1.7 in [1]. G λ,µ 2s1+s2 ( −→ G λ,µ 2s1+s2 ) is called the Gram matrix of the cell module W [(s, (s1, s2)), ((λ1, λ2), µ)] ( −→ W [(s, (s1, s2)), ((λ1, λ2), µ)). Definition 3.4. Let { C mλ sλ m µ sµ S r1,r2 i,α } (S r1,r2 i,α ,tl)∈M ′k[(s,(s1,s2)),((λ1,λ2),µ)] ({−→ C mλ sλ m µ sµ S r1,r2 i,α } (S r1,r2 i,α ,tl)∈ −→ M ′k[(s,(s1,s2)),((λ1,λ2),µ)] ) be the basis of the cell module W [(s, (s1, s2)), ((λ1, λ2), µ)] ( −→ W [(s, (s1, s2)), ((λ1, λ2), µ)]), where S r1,r2 i,α = (di, Pi), tl = ((tlλ1 , tlλ2 ), tlµ). Now, we shall introduce the ordering on the basis of the cell module W [(s, (s1, s2)), ((λ1, λ2), µ)] as follows: (Sr1,r2 i,α , tl) < (S r′ 1 ,r′ 2 j,β , tk) (i) if (i, α, r1, r2) < (j, β, r′1, r ′ 2) as in Definition 3.7 in PMK and (ii) if (i, α, r1, r2) = (j, β, r′1, r ′ 2) then (Sr1,r2 i,α , tl), (S r′ 1 ,r′ 2 j,β , tk) can be in- dexed arbitrarily. “adm-n2” — 2018/7/24 — 22:32 — page 250 — #88 250 Gram matrices and Stirling numbers The above ordering can be used for the basis of the cell module −→ W [(s, (s1, s2)), ((λ1, λ2), µ)] Arrange the basis of the cell module W [(s, (s1, s2)), ((λ1, λ2), µ)] and −→ W [(s, (s1, s2)), ((λ1, λ2), µ)] according to the order defined above and ob- tain the Gram matrix G λ,µ 2s1+s2 and −→ G λ,µ 2s1+s2 corresponding to the cell modules W [(s, (s1, s2)), ((λ1, λ2), µ)] and −→ W [(s, (s1, s2)), ((λ1, λ2), µ)] re- spectively. Theorem 3.5. (i) The algebra of Z2-relations AZ2 k (x), signed partition algebras −→ AZ2 k (x) and partition algebras Ak(x) are semisimple over K(x) where K is a field of characteristic zero where x is an indeterminate. (ii) Suppose that the characteristic of the field K is 0, then (a) the algebra of Z2-relations AZ2 k (q) is semisimple if and only if q is not a root of the polynomial f(x) where f(x) = ∏ λ,µ 2k∏ 2s1+s2=0 detGλ,µ 2s1+s2 where x = q and q ∈ C. (b) the signed partition algebra −→ AZ2 k (q) is semisimple if and only if q is not a root of the polynomial f(x) where f(x) = ∏ λ,µ 2k∏ 2s1+s2=0 det −→ G λ,µ 2s1+s2 . (c) the partition algebra Ak(x) is semisimple if and only if q is not a root of the polynomial f(x) where f(x) = ∏ λ k∏ s=0 detGλ s . (iii) In particular, (a) G λ,µ 2s1+s2 coincides with Gk 2s1+s2 if 1. λ = ([s1],Φ) and µ = [s2] when s1, s2 6= 0, 2. λ = (Φ,Φ) and µ = [s2] when s1 = 0, s2 6= 0, 3. λ = ([s1],Φ) and µ = Φ when s1 6= 0, s2 = 0 4. λ = (Φ,Φ) and µ = Φ when s1, s2 = 0, for 0 6 s1 6 k, 0 6 s2 6 k, 0 6 s1 + s2 6 k. (b) −→ G λ,µ 2s1+s2 coincides with −→ Gk 2s1+s2 if 1. λ = ([s1],Φ) and µ = [s2] when s1, s2 6= 0, 2. λ = (Φ,Φ) and µ = [s2] when s1 = 0, s2 6= 0, 3. λ = ([s1],Φ) and µ = Φ when s1 6= 0, s2 = 0 4. λ = (Φ,Φ) and µ = Φ when s1, s2 = 0, for 0 6 s1 6 k − 1, 0 6 s2 6 k − 1, 0 6 s1 + s2 6 k − 1. (c) Gλ s coincides with Gk s if 1. λ = s when s 6= 0, 2. λ = Φ when s = 0 for 0 6 s 6 k. “adm-n2” — 2018/7/24 — 22:32 — page 251 — #89 N. Karimilla Bi, M. Parvathi 251 (iii)′ (a) If q is a root of the polynomial f(x) = 2k∏ 2s1+s2=0 detGk 2s1+s2 where detGk 2s1+s2 = ∏ 06r16k−s1−s2 06r26k−s1−s2 2r1+r262k−2s1−2s2 det Ã2r1+r2,2r1+r2, Ã2r1+r2,2r1+r2 is as in Theorem 2.14 then the algebra AZ2 k (q) is not semisimple. In particular, q is an integer such that 0 6 q 6 k− 2 and q is a root of the polynomial x2 − x− 2r′, 0 6 r′ 6 k − 2 then AZ2 k (q) is not semisimple. (b) If q is a root of the polynomial f(x) = 2k∏ 2s1+s2=0 det −→ Gk 2s1+s2 where det −→ Gk 2s1+s2 = ∏ 06r16k−s1−s2−1 06r26k−s1−s2−1 2r1+r262k−2s1−2s2−1 det −̃→ A 2r1+r2,2r1+r2 ∏ det −̃→ A ρ, −̃→ A 2r1+r2,2r1+r2 and −̃→ A ρ are as in Theorem 2.14 then the algebra −→ AZ2 k (q) is not semisimple. In particular, q is an integer such that 0 6 q 6 k− 2 and q is a root of the polynomial x2 − x− 2r′, 0 6 r′ 6 k− 2 then −→ AZ2 k (q) is not semisimple. (c) If q is a root of the polynomial f(x) = k∏ s=0 detGk s where detGk s = ∏ 06r6k−s det Ãr,r, Ãr,r is as in Theorem 2.14 then the algebra Ak(q) is not semisimple. (iv) The algebra of Z2-relations (AZ2 k (q)), signed partition algebra ( −→ AZ2 k (q)) and the partition algebra (Ak(q)) over a field of characteristics 0 are quasi-hereditary for q 6= 0. Proof. Part (i): The matrix of the bilinear form associated to the cell module −→ W [(s, (s1, s2)), ((λ1, λ2), µ)] as defined in Definition 4.3(ii) with respect to the ordering of the basis as in Definition 3.4 is rewritten as follows: −→ G λ,µ 2s1+s2 = (g(i,α,r1,r2),(j,β,r′1,r′2))16(i,α,r1,r2),(j,β,r′1,r ′ 2 )6 −→ f 2s1+s2 “adm-n2” — 2018/7/24 — 22:32 — page 252 — #90 252 Gram matrices and Stirling numbers where g(i,α,r1,r2),(j,β,r′1,r ′ 2 ) = a(i,α,r1,r2),(j,β,r′1,r ′ 2 )B λ,µ δ1,δ2 , a(i,α,r1,r2),(j,β,r′1,r ′ 2 ) =    xl(Pi∨Pj) if conditions (a) and (b) of Definition 4.6 in [5] are satisfied, 0 otherwise, B λ,µ δ1,δ2 = Bλ δ1 ⊗B µ δ2 with Bλ δ1 = (φλ δ1 (sλ, tλ)) and B µ δ2 = (φµ δ2 (sµ, tµ)), B λ δ1 and B µ δ2 are the matrices of the non-degenerate bilinear forms associated to the cell module W λ and Wµ of the cellular algebras of K[Z2 ≀Ss1 ] and K[Ss2 ] respectively as in Theorem 3.8 in [1] and δ1 and δ2 depends on the product of the diagrams d r1,r2 i,α and d r′ 1 ,r′ 2 j,β . −→ G λ,µ 2s1+s2 = (a(i,α,r1,r2),(j,β,r′1,r′2)B λ,µ δ1,δ2 ) 16(i,α,r1,r2),(j,β,r′1,r ′ 2 )6 −→ f 2s1+s2 The g(i,α,r1,r2),(i,α,r1,r2) = a(i,α,r1,r2),(i,α,r1,r2)A where A = B λ,µ 1,1 = Bλ 1 ⊗B µ 1 . Thus, the leading coefficient of the Gram matrix is (detA) −→ f 2s1+s2 ×dim −→ W [(s,(s1,s2)),((λ1,λ2),µ)] which is non-zero over a characteristic zero. Therefore, the algebra −→ AZ2 k (x) is semisimple. The proof for the algebra of Z2-relations and the partition algebras are similar to the above proof. Part (ii): By Theorem 3.8 in [1], −→ AZ2 k is semisimple if and only if detGλ,µ 2s1+s2 6= 0 for all s1, s2 and for all λ, µ, since detGλ,µ 2s1+s2 6= 0 if and only if Φ is non-degenerate. Part (iii)(b): Now, −→ G λ,µ 2s1+s2 = −→ Gk 2s1+s2 if 1) λ = ([s1],Φ) and µ = [s2] when s1, s2 6= 0, 2) λ = (Φ,Φ) and µ = [s2] when s1 = 0, s2 6= 0, 3) λ = ([s1],Φ) and µ = Φ when s1 6= 0, s2 = 0 for 0 6 s1 6 k − 1, 0 6 s2 6 k − 1, 0 6 s1 + s2 6 k − 1, since A is the 1× 1 identity matrix, If λ = (Φ,Φ) and µ = Φ when s1, s2 = 0, then −→ G Φ,Φ 2s1+s2 coincides with −→ Gk 0+0. “adm-n2” — 2018/7/24 — 22:32 — page 253 — #91 N. Karimilla Bi, M. Parvathi 253 Part (iii)′(b): If q is a root of f(x) = ∏ 06r16k−s1−s2−1 06r26k−s1−s2−1 2r1+r262k−2s1−2s2−1 det −̃→ A 2r1+r2,2r1+r2 ∏ det −̃→ A ρ, then det −→ Gk 2s1+s2 = 0 = det −→ G (([s1],Φ),[s2]) 2s1+s2 . Thus, the algebra −→ AZ2 k is not semisimple. In particular, by Remark 2.15 if q is an integer such that 0 6 q 6 k−2 and q is a root of polynomial x2 − x− 2r′, 0 6 r′ 6 k− 2 then the algebra −→ AZ2 k is not semisimple. The proof of (a) and (c) is similar to the proof of (b). Part (iv): It follows from Remark 3.10 in [1] and Theorem 5.4 in [5]. Appendix The following is an example of Gram matrix in −→ AZ2 3 (x). Let s1 = 1 and s2 = 0. The following are the diagrams in J6 2×1+0. d 0,0 1,α1 = d 0,0 2,α1 = d 0,0 3,α1 = d 0,0 4,α1 = d 0,1 5,α2 = d 0,1 6,α2 = d 0,1 7,α2 = d 0,1 8,α2 = d 0,1 9,α2 = d 0,1 10,α2 = d 0,1 11,α3 = d 0,1 12,α3 = d 0,1 13,α3 = d 1,0 14,α4 = d 1,0 15,α4 = d 1,0 21,α5 = d 1,0 22,α5 = d 1,0 23,α5 = d 1,0 24,α5 = d 1,0 25,α5 = d 1,0 16,α4 = d 1,0 17,α4 = d 1,0 18,α4 = d 1,0 19,α4 = d 1,0 20,α5 = d 1,1 26,α6 = d 1,1 27,α6 = d 1,1 28,α6 = d 1,1 29,α6 = d 1,1 30,α6 = d 1,1 31,α6 = d 2,0 32,α7 = d 2,0 33,α7 = d 2,0 34,α7 = where α1 = (3,Φ,Φ,Φ), α2 = (2,Φ,Φ, 1), α3=(1,Φ,Φ, 2), α4=(2,Φ, 1,Φ), α5 = (1,Φ, 0, 2), α6 = (1,Φ, 1, 1), α7 = (1, 0, 12, 0) and d r1,r2 i,α is a dia- gram having r1 number of pairs of {e}-horizontal edges, r2 number of Z2-horizontal edges and α is the underlying partition of dr1,r2i,α . “adm-n2” — 2018/7/24 — 22:32 — page 254 — #92 254 Gram matrices and Stirling numbers d 0 ,0 1 ,α 1 d 0 ,0 2 ,α 1 d 0 ,0 3 ,α 1 d 0 ,0 4 ,α 1 d 0 ,1 5 ,α 2 d 0 ,1 6 ,α 2 d 0 ,1 7 ,α 2 d 0 ,1 8 ,α 2 d 0 ,1 9 ,α 2 d 0 ,1 1 0 ,α 2 d 0 ,1 1 1 ,α 3 d 0 ,1 1 2 ,α 3 d 0 ,1 1 3 ,α 3 d 1 ,0 1 4 ,α 4 d 1 ,0 1 5 ,α 4 d 1 ,0 1 6 ,α 4 d 1 ,0 1 7 ,α 4 d 1 ,0 1 8 ,α 4 d 1 ,0 1 9 ,α 4 d 1 ,0 2 0 ,α 5 d 1 ,0 2 1 ,α 5 d 1 ,0 2 2 ,α 5 d 1 ,0 2 3 ,α 5 d 1 ,0 2 4 ,α 5 d 1 ,0 2 5 ,α 5 d 1 ,1 2 6 ,α 6 d 1 ,1 2 7 ,α 6 d 1 ,1 2 8 ,α 6 d 1 ,1 2 9 ,α 6 d 1 ,1 3 0 ,α 6 d 1 ,1 3 1 ,α 6 d 2 ,0 3 2 ,α 7 d 2 ,0 3 3 ,α 7 d 2 ,0 3 4 ,α 7 d 0 ,0 1 ,α 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 1 d 0 ,0 2 ,α 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 1 1 d 0 ,0 3 ,α 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1 1 1 d 0 ,0 4 ,α 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 d 0 ,1 5 ,α 2 0 0 0 0 x 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0 x 0 x 0 0 x x 0 d 0 ,1 6 ,α 2 0 0 0 0 0 x 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 x 0 x 0 0 x x 0 d 0 ,1 7 ,α 2 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 x 0 0 0 0 x x 0 x d 0 ,1 8 ,α 2 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 x 0 0 0 0 x x 0 x d 0 ,1 9 ,α 2 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 x 0 x 0 0 x x d 0 ,1 1 0 ,α 2 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 x 0 x 0 0 x x d 0 ,1 1 1 ,α 3 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 x x 0 0 0 0 x x 0 0 0 0 x 0 0 d 0 ,1 1 2 ,α 3 0 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 x x 0 0 0 0 x x 0 0 0 x 0 d 0 ,1 1 3 ,α 3 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 x x 0 0 0 0 x x 0 0 x d 1 ,0 1 4 ,α 4 1 1 0 0 x 0 0 0 0 0 0 0 0 x 2 0 1 1 1 1 1 1 1 1 0 0 0 x 0 x x 0 x 2 x 2 0 d 1 ,0 1 5 ,α 4 0 0 1 1 0 x 0 0 0 0 0 0 0 0 x 2 1 1 1 1 1 1 1 1 0 0 0 x 0 x x 0 x 2 x 2 0 d 1 ,0 1 6 ,α 4 1 0 0 1 0 0 x 0 0 0 0 0 0 1 1 x 2 0 1 1 1 1 0 0 1 1 x 0 0 0 0 x x 2 0 x 2 d 1 ,0 1 7 ,α 4 0 1 1 0 0 0 0 x 0 0 0 0 0 1 1 0 x 2 1 1 1 1 0 0 1 1 x 0 0 0 0 x x 2 0 x 2 d 1 ,0 1 8 ,α 4 1 0 1 0 0 0 0 0 x 0 0 0 0 1 1 1 1 x 2 0 0 0 1 1 1 1 0 0 x 0 x 0 0 x 2 x 2 d 1 ,0 1 9 ,α 4 0 1 0 1 0 0 0 0 0 x 0 0 0 1 1 1 1 0 x 2 0 0 1 1 1 1 0 0 x 0 x 0 0 x 2 x 2 d 1 ,0 2 0 ,α 5 1 0 1 0 0 0 0 0 0 0 x 0 0 1 1 1 1 0 0 x 2 x 1 1 1 1 x x 0 0 0 0 x 2 0 0 d 1 ,0 2 1 ,α 5 0 1 0 1 0 0 0 0 0 0 x 0 0 1 1 1 1 0 0 x x 2 1 1 1 1 x x 0 0 0 0 x 2 0 0 d 1 ,0 2 2 ,α 5 1 0 0 1 0 0 0 0 0 0 0 x 0 1 1 0 0 1 1 1 1 x 2 x 1 1 0 0 x x 0 0 0 x 2 0 d 1 ,0 2 3 ,α 5 0 1 1 0 0 0 0 0 0 0 0 x 0 1 1 0 0 1 1 1 1 x x 2 1 1 0 0 x x 0 0 0 x 2 0 d 1 ,0 2 4 ,α 5 1 1 0 0 0 0 0 0 0 0 0 0 x 0 0 1 1 1 1 1 1 1 1 x 2 x 0 0 0 0 x x 0 0 x 2 d 1 ,0 2 5 ,α 5 0 0 1 1 0 0 0 0 0 0 0 0 x 0 0 1 1 1 1 1 1 1 1 x x 2 0 0 0 0 x x 0 0 x 2 d 1 ,1 2 6 ,α 6 0 0 0 0 0 0 x x 0 0 x 0 0 0 0 x x 0 0 x x 0 0 0 0 x 3 x 2 0 0 0 0 x 3 0 0 d 1 ,1 2 7 ,α 6 0 0 0 0 x x 0 0 0 0 x 0 0 x x 0 0 0 0 x x 0 0 0 0 x 2 x 3 0 0 0 0 x 3 0 0 d 1 ,1 2 8 ,α 6 0 0 0 0 0 0 0 0 x x 0 x 0 x x 0 0 x x 0 0 x x 0 0 0 0 x 3 x 2 0 0 0 x 3 0 d 1 ,1 2 9 ,α 6 0 0 0 0 x x 0 0 0 0 0 x 0 x x 0 0 0 0 0 0 x x 0 0 0 0 x 2 x 3 0 0 0 x 3 0 d 1 ,1 3 0 ,α 6 0 0 0 0 0 0 0 0 x x 0 0 x 0 0 0 0 x x 0 0 0 0 x x 0 0 0 0 x 3 x 2 0 0 x 3 d 1 ,1 3 1 ,α 6 0 0 0 0 0 0 x x 0 0 0 0 x 0 0 x x 0 0 0 0 0 0 x x 0 0 0 0 x 2 x 3 0 0 x 3 d 2 ,0 3 2 ,α 7 1 1 1 1 x x x x 0 0 x 0 0 x 2 x 2 x 2 x 2 0 0 x 2 x 2 0 0 0 0 x 3 x 3 0 0 0 0 x 4 0 0 d 2 ,0 3 3 ,α 7 1 1 1 1 x x 0 0 x x 0 x 0 x 2 x 2 0 0 x 2 x 2 0 0 x 2 x 2 0 0 0 0 x 3 x 3 0 0 0 x 4 0 d 2 ,0 3 4 ,α 7 1 1 1 1 0 0 x x x x 0 0 x 0 0 x 2 x 2 x 2 x 2 0 0 0 0 x 2 x 2 0 0 0 0 x 3 x 3 0 0 x 4 “adm-n2” — 2018/7/24 — 22:32 — page 255 — #93 N. Karimilla Bi, M. Parvathi 255 After applying the column operations and by Theorem 2.14 the matrix −→ G3 2.1+0 reduces as follows: −→ A 0,0 ∼ −̃→ A 0,0 = I4, −→ A 1,1 ∼ −̃→ A 1,1 = xI9, −→ A 2,2 ∼ −̃→ A 2,2 = (x2 − x− 2)I12 + (−2)I ′12. where In denotes n× n identity matrix and I ′n denotes n× n off-diagonal matrix. After applying the row and column operations, the matrix −→ A ρ is reduced as follows: −→ A ρ ∼ d 1,1 26,α6 d 1,1 27,α6 d 1,1 28,α6 d 1,1 29,α6 d 1,1 30,α6 d 1,1 31,α6 d 2,0 32,α7 d 2,0 33,α7 d 2,0 34,α7 d 1,1 26,α6 x3 −3x x2 −x 0 0 0 −2x −x2 +x 0 0 d 1,1 27,α6 x2 −x x3 −3x 0 −2x 0 0 −x2 +x 0 0 d 1,1 28,α6 0 0 x3 −3x x2 −x −2x 0 0 −x2 +x 0 d 1,1 29,α6 0 −2x x2 −x x3 −3x 0 0 0 −x2 +x 0 d 1,1 30,α6 0 0 −2x 0 x3 −3x x2 −x 0 0 −x2 +x d 1,1 31,α6 −2x 0 0 0 x2 −x x3 −3x 0 0 −x2 +x d 2,0 32,α7 −x2 +x −x2 +x 0 0 0 0 x 4 −2x 3 −4x 2 +5x+8 −2x2 +2x+8 −2x2 +2x+8 d 2,0 33,α7 0 0 −x2 +x −x2 +x 0 0 −2x2 +2x+8 x 4 −2x 3 −4x 2 +5x+8 −2x2 +2x+8 d 2,0 34,α7 0 0 0 0 −x2 +x −x2 +x −2x2 +2x+8 −2x2 +2x+8 x 4 −2x 3 −4x 2 +5x+8 The entry x2 − x in the above matrix cannot be eliminated while applying column operations since the following diagrams do not belong to −→ AZ2 3 (x). , , Acknowledgement The authors would like to express their gratitude and sincere thanks to the referee for all his(her) valuable comments and suggestions which in turn made the paper easy to read. References [1] J. J. Graham and G. I. Lehrer, Cellular Algebras, Inventiones Mathematicae, 123, 1 - 34(1996). “adm-n2” — 2018/7/24 — 22:32 — page 256 — #94 256 Gram matrices and Stirling numbers [2] Arun Ram, Tom Halverson, The partition algebras, European Journal of electronics, 26(2005), 869-921. [3] V. F. R. Jones, The Potts model and the symmetric group, in Subfactors (Kyuzeso, 1993), 259–267, World Sci. Publ., River Edge, NJ. [4] S. König and C. Xi, When is a cellular algebra quasi-hereditary?, Math. Ann. 315 (1999), no. 2, 281–293. [5] N. Karimilla Bi, Cellularity of a larger class of diagram algebras, accepted for publication in Kyunpook Mathematical journal(arXiv:1506.02780). [6] N. Karimilla Bi and M. Parvathi, Gram Matrices and Stirling Numbers of a Class of Diagram Algebras, I, Algebra Discrete Math., 25 (2018), no. 1, pp. 73–97. [7] M. Parvathi, Signed partition algebras, Comm. Algebra 32 (2004), no. 5, 1865– 1880. [8] P. Martin and H. Saleur, Algebras in higher-dimensional statistical mechanics—the exceptional partition (mean field) algebras, Lett. Math. Phys. 30 (1994), no. 3, 179–185. [9] P. P. Martin, Representations of graph Temperley-Lieb algebras, Publ. Res. Inst. Math. Sci. 26 (1990), no. 3, 485–503. [10] P. Martin, Temperley-Lieb algebras for nonplanar statistical mechanics—the par- tition algebra construction, J. Knot Theory Ramifications 3 (1994), no. 1, 51–82. [11] P. Martin, The structure of the partition algebras, J. Algebra 183 (1996), no. 2, 319–358. [12] P. Martin, The partition algebra and the Potts model transfer matrix spectrum in high dimension, J. Phys. A 33 (2000) 3669–3695. [13] P.P. Martin, Potts models and related problems in statistical mechanics, Series on Advances in stastical Mechanics, vol.5, World Sientific Publishing Co. Inc., Teaneck NJ, 1991. [14] M. Parvathi, C. Selvaraj, Signed Brauer’s algebra as centralizer algebras, Comm. in Algebra 27 (1999), no. 12, 5985–5998. [15] Richard P. Stanley, Enumerative combinatorics, Volume I, Cambridge studies in Advanced mathematics 49. [16] V. Kodiyalam, R. Srinivasan and V. S. Sunder, The algebra of G-relations, Proc. Indian Acad. Sci. Math. Sci. 110 (2000), no. 3, 263–292. [17] H. Wenzl, Representations of Hecke algebras of type An and subfactors, Invent. Math 92, (1988), 349–383. [18] C. Xi, Partition algebras are cellular, Compositio Math. 119 (1999), no. 1, 99–109. Contact information N. Karimilla Bi, M. Parvathi Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chepauk, Chennai -600 005, Tamilnadu, India E-Mail(s): sparvathi@hotmail.com Received by the editors: 22.09.2015 and in final form 16.03.2018.