Module decompositions via Rickart modules

This work is devoted to the investigation of module decompositions which arise from Rickart modules, socle and radical of modules. In this regard, the structure and several illustrative examples of inverse split modules relative to the socle and radical are given. It is shown that a module M has dec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Harmanci, A., Ungor, B.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2018
Schriftenreihe:Algebra and Discrete Mathematics
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188373
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Module decompositions via Rickart modules/ A. Harmanci, B. Ungor // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 1. — С. 47–64. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188373
record_format dspace
fulltext
spelling nasplib_isofts_kiev_ua-123456789-1883732025-02-09T12:50:06Z Module decompositions via Rickart modules Harmanci, A. Ungor, B. This work is devoted to the investigation of module decompositions which arise from Rickart modules, socle and radical of modules. In this regard, the structure and several illustrative examples of inverse split modules relative to the socle and radical are given. It is shown that a module M has decompositions M = Soc(M) ⊕ N and M = Rad(M) ⊕ K where N and K are Rickart if and only if M is Soc(M)-inverse split and Rad(M)-inverse split, respectively. Right Soc(·)-inverse split left perfect rings and semiprimitive right hereditary rings are determined exactly. Also, some characterizations for a ring R which has a decomposition R = Soc(RR) ⊕ I with I a hereditary Rickart module are obtained. The authors are very thankful to the referee for his/her helpful suggestions to improve the presentation of this paper. 2018 Article Module decompositions via Rickart modules/ A. Harmanci, B. Ungor // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 1. — С. 47–64. — Бібліогр.: 15 назв. — англ. 1726-3255 2010 MSC: 16D10, 16D40, 16D80. https://nasplib.isofts.kiev.ua/handle/123456789/188373 en Algebra and Discrete Mathematics application/pdf Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This work is devoted to the investigation of module decompositions which arise from Rickart modules, socle and radical of modules. In this regard, the structure and several illustrative examples of inverse split modules relative to the socle and radical are given. It is shown that a module M has decompositions M = Soc(M) ⊕ N and M = Rad(M) ⊕ K where N and K are Rickart if and only if M is Soc(M)-inverse split and Rad(M)-inverse split, respectively. Right Soc(·)-inverse split left perfect rings and semiprimitive right hereditary rings are determined exactly. Also, some characterizations for a ring R which has a decomposition R = Soc(RR) ⊕ I with I a hereditary Rickart module are obtained.
format Article
author Harmanci, A.
Ungor, B.
spellingShingle Harmanci, A.
Ungor, B.
Module decompositions via Rickart modules
Algebra and Discrete Mathematics
author_facet Harmanci, A.
Ungor, B.
author_sort Harmanci, A.
title Module decompositions via Rickart modules
title_short Module decompositions via Rickart modules
title_full Module decompositions via Rickart modules
title_fullStr Module decompositions via Rickart modules
title_full_unstemmed Module decompositions via Rickart modules
title_sort module decompositions via rickart modules
publisher Інститут прикладної математики і механіки НАН України
publishDate 2018
url https://nasplib.isofts.kiev.ua/handle/123456789/188373
citation_txt Module decompositions via Rickart modules/ A. Harmanci, B. Ungor // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 1. — С. 47–64. — Бібліогр.: 15 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT harmancia moduledecompositionsviarickartmodules
AT ungorb moduledecompositionsviarickartmodules
first_indexed 2025-11-26T00:41:48Z
last_indexed 2025-11-26T00:41:48Z
_version_ 1849811490131935232