Module decompositions via Rickart modules
This work is devoted to the investigation of module decompositions which arise from Rickart modules, socle and radical of modules. In this regard, the structure and several illustrative examples of inverse split modules relative to the socle and radical are given. It is shown that a module M has dec...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2018
|
| Schriftenreihe: | Algebra and Discrete Mathematics |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/188373 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Module decompositions via Rickart modules/ A. Harmanci, B. Ungor // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 1. — С. 47–64. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188373 |
|---|---|
| record_format |
dspace |
| fulltext |
|
| spelling |
nasplib_isofts_kiev_ua-123456789-1883732025-02-09T12:50:06Z Module decompositions via Rickart modules Harmanci, A. Ungor, B. This work is devoted to the investigation of module decompositions which arise from Rickart modules, socle and radical of modules. In this regard, the structure and several illustrative examples of inverse split modules relative to the socle and radical are given. It is shown that a module M has decompositions M = Soc(M) ⊕ N and M = Rad(M) ⊕ K where N and K are Rickart if and only if M is Soc(M)-inverse split and Rad(M)-inverse split, respectively. Right Soc(·)-inverse split left perfect rings and semiprimitive right hereditary rings are determined exactly. Also, some characterizations for a ring R which has a decomposition R = Soc(RR) ⊕ I with I a hereditary Rickart module are obtained. The authors are very thankful to the referee for his/her helpful suggestions to improve the presentation of this paper. 2018 Article Module decompositions via Rickart modules/ A. Harmanci, B. Ungor // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 1. — С. 47–64. — Бібліогр.: 15 назв. — англ. 1726-3255 2010 MSC: 16D10, 16D40, 16D80. https://nasplib.isofts.kiev.ua/handle/123456789/188373 en Algebra and Discrete Mathematics application/pdf Інститут прикладної математики і механіки НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| description |
This work is devoted to the investigation of module decompositions which arise from Rickart modules, socle and radical of modules. In this regard, the structure and several illustrative examples of inverse split modules relative to the socle and radical are given. It is shown that a module M has decompositions M = Soc(M) ⊕ N and M = Rad(M) ⊕ K where N and K are Rickart if and only if M is Soc(M)-inverse split and Rad(M)-inverse split, respectively. Right Soc(·)-inverse split left perfect rings and semiprimitive right hereditary rings are determined exactly. Also, some characterizations for a ring R which has a decomposition R = Soc(RR) ⊕ I with I a hereditary Rickart module are obtained. |
| format |
Article |
| author |
Harmanci, A. Ungor, B. |
| spellingShingle |
Harmanci, A. Ungor, B. Module decompositions via Rickart modules Algebra and Discrete Mathematics |
| author_facet |
Harmanci, A. Ungor, B. |
| author_sort |
Harmanci, A. |
| title |
Module decompositions via Rickart modules |
| title_short |
Module decompositions via Rickart modules |
| title_full |
Module decompositions via Rickart modules |
| title_fullStr |
Module decompositions via Rickart modules |
| title_full_unstemmed |
Module decompositions via Rickart modules |
| title_sort |
module decompositions via rickart modules |
| publisher |
Інститут прикладної математики і механіки НАН України |
| publishDate |
2018 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188373 |
| citation_txt |
Module decompositions via Rickart modules/ A. Harmanci, B. Ungor // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 1. — С. 47–64. — Бібліогр.: 15 назв. — англ. |
| series |
Algebra and Discrete Mathematics |
| work_keys_str_mv |
AT harmancia moduledecompositionsviarickartmodules AT ungorb moduledecompositionsviarickartmodules |
| first_indexed |
2025-11-26T00:41:48Z |
| last_indexed |
2025-11-26T00:41:48Z |
| _version_ |
1849811490131935232 |