Connectedness of spheres in Cayley graphs

We introduce the notion of connection thickness of spheres in a Cayley graph, related to dead-ends and their retreat depth. It was well-known that connection thickness is bounded for finitely presented one-ended groups. We compute that for natural generating sets of lamplighter groups on a line or o...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2018
Автори: Brieussel, J., Gournay, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/188410
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Connectedness of spheres in Cayley graphs / J. Brieussel, A. Gournay // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 190–246. — Бібліогр.: 40 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188410
record_format dspace
spelling Brieussel, J.
Gournay, A.
2023-02-27T15:54:28Z
2023-02-27T15:54:28Z
2018
Connectedness of spheres in Cayley graphs / J. Brieussel, A. Gournay // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 190–246. — Бібліогр.: 40 назв. — англ.
1726-3255
2010 MSC: Primary 20F65; Secondary 20E22, 20F10.
https://nasplib.isofts.kiev.ua/handle/123456789/188410
We introduce the notion of connection thickness of spheres in a Cayley graph, related to dead-ends and their retreat depth. It was well-known that connection thickness is bounded for finitely presented one-ended groups. We compute that for natural generating sets of lamplighter groups on a line or on a tree, connection thickness is linear or logarithmic respectively. We show that it depends strongly on the generating set. We give an example where the metric induced at the (finite) thickness of connection gives diameter of order n² to the sphere of radius n. We also discuss the rarity of dead-ends and the relationships of connection thickness with cut sets in percolation theory and with almost-convexity. Finally, we present a list of open questions about spheres in Cayley graphs.
Supported by the ERC-StG 277728 “GeomAnGroup”.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Connectedness of spheres in Cayley graphs
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Connectedness of spheres in Cayley graphs
spellingShingle Connectedness of spheres in Cayley graphs
Brieussel, J.
Gournay, A.
title_short Connectedness of spheres in Cayley graphs
title_full Connectedness of spheres in Cayley graphs
title_fullStr Connectedness of spheres in Cayley graphs
title_full_unstemmed Connectedness of spheres in Cayley graphs
title_sort connectedness of spheres in cayley graphs
author Brieussel, J.
Gournay, A.
author_facet Brieussel, J.
Gournay, A.
publishDate 2018
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We introduce the notion of connection thickness of spheres in a Cayley graph, related to dead-ends and their retreat depth. It was well-known that connection thickness is bounded for finitely presented one-ended groups. We compute that for natural generating sets of lamplighter groups on a line or on a tree, connection thickness is linear or logarithmic respectively. We show that it depends strongly on the generating set. We give an example where the metric induced at the (finite) thickness of connection gives diameter of order n² to the sphere of radius n. We also discuss the rarity of dead-ends and the relationships of connection thickness with cut sets in percolation theory and with almost-convexity. Finally, we present a list of open questions about spheres in Cayley graphs.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188410
citation_txt Connectedness of spheres in Cayley graphs / J. Brieussel, A. Gournay // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 190–246. — Бібліогр.: 40 назв. — англ.
work_keys_str_mv AT brieusselj connectednessofspheresincayleygraphs
AT gournaya connectednessofspheresincayleygraphs
first_indexed 2025-12-07T20:45:33Z
last_indexed 2025-12-07T20:45:33Z
_version_ 1850883790605385728