On a graph isomorphic to its intersection graph: self-graphoidal graphs

A graph G is called a graphoidal graph if there exists a graph H and a graphoidal cover ψ of H such that G ≅ Ω (H, ψ ). Then the graph G is said to be self-graphoidal if it is isomorphic to one of its graphoidal graphs. In this paper, we have examined the existence of a few self-graphoidal graphs fr...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2018
Автори: Das, P.K., Singh, K.R.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/188411
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On a graph isomorphic to its intersection graph: self-graphoidal graphs / P.K. Das, K.R. Singh // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 247–255. — Бібліогр.: 11назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188411
record_format dspace
spelling Das, P.K.
Singh, K.R.
2023-02-27T15:56:35Z
2023-02-27T15:56:35Z
2018
On a graph isomorphic to its intersection graph: self-graphoidal graphs / P.K. Das, K.R. Singh // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 247–255. — Бібліогр.: 11назв. — англ.
1726-3255
2010 MSC: 05C38, 05C75.
https://nasplib.isofts.kiev.ua/handle/123456789/188411
A graph G is called a graphoidal graph if there exists a graph H and a graphoidal cover ψ of H such that G ≅ Ω (H, ψ ). Then the graph G is said to be self-graphoidal if it is isomorphic to one of its graphoidal graphs. In this paper, we have examined the existence of a few self-graphoidal graphs from path length sequence of a graphoidal cover and obtained new results on self-graphoidal graphs.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On a graph isomorphic to its intersection graph: self-graphoidal graphs
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On a graph isomorphic to its intersection graph: self-graphoidal graphs
spellingShingle On a graph isomorphic to its intersection graph: self-graphoidal graphs
Das, P.K.
Singh, K.R.
title_short On a graph isomorphic to its intersection graph: self-graphoidal graphs
title_full On a graph isomorphic to its intersection graph: self-graphoidal graphs
title_fullStr On a graph isomorphic to its intersection graph: self-graphoidal graphs
title_full_unstemmed On a graph isomorphic to its intersection graph: self-graphoidal graphs
title_sort on a graph isomorphic to its intersection graph: self-graphoidal graphs
author Das, P.K.
Singh, K.R.
author_facet Das, P.K.
Singh, K.R.
publishDate 2018
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description A graph G is called a graphoidal graph if there exists a graph H and a graphoidal cover ψ of H such that G ≅ Ω (H, ψ ). Then the graph G is said to be self-graphoidal if it is isomorphic to one of its graphoidal graphs. In this paper, we have examined the existence of a few self-graphoidal graphs from path length sequence of a graphoidal cover and obtained new results on self-graphoidal graphs.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188411
citation_txt On a graph isomorphic to its intersection graph: self-graphoidal graphs / P.K. Das, K.R. Singh // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 247–255. — Бібліогр.: 11назв. — англ.
work_keys_str_mv AT daspk onagraphisomorphictoitsintersectiongraphselfgraphoidalgraphs
AT singhkr onagraphisomorphictoitsintersectiongraphselfgraphoidalgraphs
first_indexed 2025-11-30T11:49:18Z
last_indexed 2025-11-30T11:49:18Z
_version_ 1850857530536755200