Spectral properties of partial automorphisms of a binary rooted tree
We study asymptotics of the spectral measure of a randomly chosen partial automorphism of a rooted tree. To every partial automorphism x we assign its action matrix Ax. It is shown that the uniform distribution on eigenvalues of Ax converges weakly in probability to δ₀ as n → ∞, where δ₀ is the delt...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2018 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/188414 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Spectral properties of partial automorphisms of a binary rooted tree / E. Kochubinska // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 280–289. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | We study asymptotics of the spectral measure of a randomly chosen partial automorphism of a rooted tree. To every partial automorphism x we assign its action matrix Ax. It is shown that the uniform distribution on eigenvalues of Ax converges weakly in probability to δ₀ as n → ∞, where δ₀ is the delta measure concentrated at 0.
|
|---|---|
| ISSN: | 1726-3255 |