Abelian doppelsemigroups

A doppelsemigroup is an algebraic system consisting of a set with two binary associative operations satisfying certain identities. Doppelsemigroups are a generalization of semigroups and they have relationships with such algebraic structures as doppelalgebras, duplexes, interassociative semigroups,...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2018
Автори: Zhuchok, A.V., Knauer, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/188415
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Abelian doppelsemigroups / A.V. Zhuchok, K. Knauer // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 290–304. — Бібліогр.: 31 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:A doppelsemigroup is an algebraic system consisting of a set with two binary associative operations satisfying certain identities. Doppelsemigroups are a generalization of semigroups and they have relationships with such algebraic structures as doppelalgebras, duplexes, interassociative semigroups, restrictive bisemigroups, dimonoids and trioids. This paper is devoted to the study of abelian doppelsemigroups. We show that every abelian doppelsemigroup can be constructed from a left and right commutative semigroup and describe the free abelian doppelsemigroup. We also characterize the least abelian congruence on the free doppel-semigroup, give examples of abelian doppelsemigroups and find conditions under which the operations of an abelian doppelsemi-group coincide.
ISSN:1726-3255