On the number of topologies on a finite set
We denote the number of distinct topologies which can be defined on a set X with n elements by T(n). Similarly, T0(n) denotes the number of distinct T₀ topologies on the set X. In the present paper, we prove that for any prime p, T(pᵏ) ≡ k + 1 (mod p), and that for each natural number n there exists...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2019 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2019
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/188421 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On the number of topologies on a finite set / M.Y. Kizmaz // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 50–57. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188421 |
|---|---|
| record_format |
dspace |
| spelling |
Kizmaz, M.Y. 2023-02-28T18:51:11Z 2023-02-28T18:51:11Z 2019 On the number of topologies on a finite set / M.Y. Kizmaz // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 50–57. — Бібліогр.: 8 назв. — англ. 1726-3255 2010 MSC: Primary 11B50, Secondary 11B05. https://nasplib.isofts.kiev.ua/handle/123456789/188421 We denote the number of distinct topologies which can be defined on a set X with n elements by T(n). Similarly, T0(n) denotes the number of distinct T₀ topologies on the set X. In the present paper, we prove that for any prime p, T(pᵏ) ≡ k + 1 (mod p), and that for each natural number n there exists a unique k such that T(p + n) ≡ k (mod p). We calculate k for n = 0, 1, 2, 3, 4. We give an alternative proof for a result of Z. I. Borevich to the effect that T₀(p + n) ≡ T₀(n + 1) (mod p). en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics On the number of topologies on a finite set Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On the number of topologies on a finite set |
| spellingShingle |
On the number of topologies on a finite set Kizmaz, M.Y. |
| title_short |
On the number of topologies on a finite set |
| title_full |
On the number of topologies on a finite set |
| title_fullStr |
On the number of topologies on a finite set |
| title_full_unstemmed |
On the number of topologies on a finite set |
| title_sort |
on the number of topologies on a finite set |
| author |
Kizmaz, M.Y. |
| author_facet |
Kizmaz, M.Y. |
| publishDate |
2019 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
We denote the number of distinct topologies which can be defined on a set X with n elements by T(n). Similarly, T0(n) denotes the number of distinct T₀ topologies on the set X. In the present paper, we prove that for any prime p, T(pᵏ) ≡ k + 1 (mod p), and that for each natural number n there exists a unique k such that T(p + n) ≡ k (mod p). We calculate k for n = 0, 1, 2, 3, 4. We give an alternative proof for a result of Z. I. Borevich to the effect that T₀(p + n) ≡ T₀(n + 1) (mod p).
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188421 |
| citation_txt |
On the number of topologies on a finite set / M.Y. Kizmaz // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 50–57. — Бібліогр.: 8 назв. — англ. |
| work_keys_str_mv |
AT kizmazmy onthenumberoftopologiesonafiniteset |
| first_indexed |
2025-12-07T16:09:39Z |
| last_indexed |
2025-12-07T16:09:39Z |
| _version_ |
1850866432298975232 |