On the number of topologies on a finite set

We denote the number of distinct topologies which can be defined on a set X with n elements by T(n). Similarly, T0(n) denotes the number of distinct T₀ topologies on the set X. In the present paper, we prove that for any prime p, T(pᵏ) ≡ k + 1 (mod p), and that for each natural number n there exists...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2019
Main Author: Kizmaz, M.Y.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2019
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/188421
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On the number of topologies on a finite set / M.Y. Kizmaz // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 50–57. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188421
record_format dspace
spelling Kizmaz, M.Y.
2023-02-28T18:51:11Z
2023-02-28T18:51:11Z
2019
On the number of topologies on a finite set / M.Y. Kizmaz // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 50–57. — Бібліогр.: 8 назв. — англ.
1726-3255
2010 MSC: Primary 11B50, Secondary 11B05.
https://nasplib.isofts.kiev.ua/handle/123456789/188421
We denote the number of distinct topologies which can be defined on a set X with n elements by T(n). Similarly, T0(n) denotes the number of distinct T₀ topologies on the set X. In the present paper, we prove that for any prime p, T(pᵏ) ≡ k + 1 (mod p), and that for each natural number n there exists a unique k such that T(p + n) ≡ k (mod p). We calculate k for n = 0, 1, 2, 3, 4. We give an alternative proof for a result of Z. I. Borevich to the effect that T₀(p + n) ≡ T₀(n + 1) (mod p).
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On the number of topologies on a finite set
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the number of topologies on a finite set
spellingShingle On the number of topologies on a finite set
Kizmaz, M.Y.
title_short On the number of topologies on a finite set
title_full On the number of topologies on a finite set
title_fullStr On the number of topologies on a finite set
title_full_unstemmed On the number of topologies on a finite set
title_sort on the number of topologies on a finite set
author Kizmaz, M.Y.
author_facet Kizmaz, M.Y.
publishDate 2019
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We denote the number of distinct topologies which can be defined on a set X with n elements by T(n). Similarly, T0(n) denotes the number of distinct T₀ topologies on the set X. In the present paper, we prove that for any prime p, T(pᵏ) ≡ k + 1 (mod p), and that for each natural number n there exists a unique k such that T(p + n) ≡ k (mod p). We calculate k for n = 0, 1, 2, 3, 4. We give an alternative proof for a result of Z. I. Borevich to the effect that T₀(p + n) ≡ T₀(n + 1) (mod p).
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188421
citation_txt On the number of topologies on a finite set / M.Y. Kizmaz // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 50–57. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT kizmazmy onthenumberoftopologiesonafiniteset
first_indexed 2025-12-07T16:09:39Z
last_indexed 2025-12-07T16:09:39Z
_version_ 1850866432298975232