On free vector balleans
A vector balleans is a vector space over R endowed with a coarse structure in such a way that the vector operations are coarse mappings. We prove that, for every ballean (X, E), there exists the unique free vector ballean V(X, E) and describe the coarse structure of V(X, E). It is shown that normali...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2019 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2019
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/188423 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On free vector balleans / I. Protasov, K. Protasova // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 70–74. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188423 |
|---|---|
| record_format |
dspace |
| spelling |
Protasov, I. Protasova, K. 2023-02-28T19:09:13Z 2023-02-28T19:09:13Z 2019 On free vector balleans / I. Protasov, K. Protasova // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 70–74. — Бібліогр.: 11 назв. — англ. 1726-3255 2010 MSC: 46A17, 54E35 https://nasplib.isofts.kiev.ua/handle/123456789/188423 A vector balleans is a vector space over R endowed with a coarse structure in such a way that the vector operations are coarse mappings. We prove that, for every ballean (X, E), there exists the unique free vector ballean V(X, E) and describe the coarse structure of V(X, E). It is shown that normality of V(X, E) is equivalent to metrizability of (X, E). en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics On free vector balleans Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On free vector balleans |
| spellingShingle |
On free vector balleans Protasov, I. Protasova, K. |
| title_short |
On free vector balleans |
| title_full |
On free vector balleans |
| title_fullStr |
On free vector balleans |
| title_full_unstemmed |
On free vector balleans |
| title_sort |
on free vector balleans |
| author |
Protasov, I. Protasova, K. |
| author_facet |
Protasov, I. Protasova, K. |
| publishDate |
2019 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
A vector balleans is a vector space over R endowed with a coarse structure in such a way that the vector operations are coarse mappings. We prove that, for every ballean (X, E), there exists the unique free vector ballean V(X, E) and describe the coarse structure of V(X, E). It is shown that normality of V(X, E) is equivalent to metrizability of (X, E).
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188423 |
| citation_txt |
On free vector balleans / I. Protasov, K. Protasova // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 70–74. — Бібліогр.: 11 назв. — англ. |
| work_keys_str_mv |
AT protasovi onfreevectorballeans AT protasovak onfreevectorballeans |
| first_indexed |
2025-12-07T16:37:35Z |
| last_indexed |
2025-12-07T16:37:35Z |
| _version_ |
1850868190128635904 |