On free vector balleans

A vector balleans is a vector space over R endowed with a coarse structure in such a way that the vector operations are coarse mappings. We prove that, for every ballean (X, E), there exists the unique free vector ballean V(X, E) and describe the coarse structure of V(X, E). It is shown that normali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2019
Hauptverfasser: Protasov, I., Protasova, K.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2019
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188423
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On free vector balleans / I. Protasov, K. Protasova // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 70–74. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188423
record_format dspace
spelling Protasov, I.
Protasova, K.
2023-02-28T19:09:13Z
2023-02-28T19:09:13Z
2019
On free vector balleans / I. Protasov, K. Protasova // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 70–74. — Бібліогр.: 11 назв. — англ.
1726-3255
2010 MSC: 46A17, 54E35
https://nasplib.isofts.kiev.ua/handle/123456789/188423
A vector balleans is a vector space over R endowed with a coarse structure in such a way that the vector operations are coarse mappings. We prove that, for every ballean (X, E), there exists the unique free vector ballean V(X, E) and describe the coarse structure of V(X, E). It is shown that normality of V(X, E) is equivalent to metrizability of (X, E).
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On free vector balleans
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On free vector balleans
spellingShingle On free vector balleans
Protasov, I.
Protasova, K.
title_short On free vector balleans
title_full On free vector balleans
title_fullStr On free vector balleans
title_full_unstemmed On free vector balleans
title_sort on free vector balleans
author Protasov, I.
Protasova, K.
author_facet Protasov, I.
Protasova, K.
publishDate 2019
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description A vector balleans is a vector space over R endowed with a coarse structure in such a way that the vector operations are coarse mappings. We prove that, for every ballean (X, E), there exists the unique free vector ballean V(X, E) and describe the coarse structure of V(X, E). It is shown that normality of V(X, E) is equivalent to metrizability of (X, E).
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188423
citation_txt On free vector balleans / I. Protasov, K. Protasova // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 70–74. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT protasovi onfreevectorballeans
AT protasovak onfreevectorballeans
first_indexed 2025-12-07T16:37:35Z
last_indexed 2025-12-07T16:37:35Z
_version_ 1850868190128635904