Classification of homogeneous Fourier matrices
Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group SL₂(Z). In this paper, we show that there is a one-to-one correspondence between Fourier matrices associated to modular data and self-dual C-algebras that s...
Збережено в:
| Дата: | 2019 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2019
|
| Назва видання: | Algebra and Discrete Mathematics |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/188424 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Classification of homogeneous Fourier matrices / G. Singh // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 75–84. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188424 |
|---|---|
| record_format |
dspace |
| fulltext |
|
| spelling |
nasplib_isofts_kiev_ua-123456789-1884242025-02-09T10:28:30Z Classification of homogeneous Fourier matrices Singh, G. Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group SL₂(Z). In this paper, we show that there is a one-to-one correspondence between Fourier matrices associated to modular data and self-dual C-algebras that satisfy a certain condition. We prove that a homogenous C-algebra arising from a Fourier matrix has all the degrees equal to 1. 2019 Article Classification of homogeneous Fourier matrices / G. Singh // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 75–84. — Бібліогр.: 7 назв. — англ. 1726-3255 2010 MSC: Primary 05E30; Secondary 05E99, 81R05. https://nasplib.isofts.kiev.ua/handle/123456789/188424 en Algebra and Discrete Mathematics application/pdf Інститут прикладної математики і механіки НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| description |
Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group SL₂(Z). In this paper, we show that there is a one-to-one correspondence between Fourier matrices associated to modular data and self-dual C-algebras that satisfy a certain condition. We prove that a homogenous C-algebra arising from a Fourier matrix has all the degrees equal to 1. |
| format |
Article |
| author |
Singh, G. |
| spellingShingle |
Singh, G. Classification of homogeneous Fourier matrices Algebra and Discrete Mathematics |
| author_facet |
Singh, G. |
| author_sort |
Singh, G. |
| title |
Classification of homogeneous Fourier matrices |
| title_short |
Classification of homogeneous Fourier matrices |
| title_full |
Classification of homogeneous Fourier matrices |
| title_fullStr |
Classification of homogeneous Fourier matrices |
| title_full_unstemmed |
Classification of homogeneous Fourier matrices |
| title_sort |
classification of homogeneous fourier matrices |
| publisher |
Інститут прикладної математики і механіки НАН України |
| publishDate |
2019 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188424 |
| citation_txt |
Classification of homogeneous Fourier matrices / G. Singh // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 75–84. — Бібліогр.: 7 назв. — англ. |
| series |
Algebra and Discrete Mathematics |
| work_keys_str_mv |
AT singhg classificationofhomogeneousfouriermatrices |
| first_indexed |
2025-11-25T20:37:34Z |
| last_indexed |
2025-11-25T20:37:34Z |
| _version_ |
1849796124277211136 |