A family of doubly stochastic matrices involving Chebyshev polynomials

A doubly stochastic matrix is a square matrix A = (aij) of non-negative real numbers such that ∑i aij =∑j aij =1. The Chebyshev polynomial of the first kind is defined by the recurrence relation T₀ (x) = 1, T₁ (x) = x, and Tn+1(x) = 2xTn(x) − Tn−1(x). In this paper, we show a 2ᵏ ×2ᵏ (for each intege...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2019
Main Authors: Ahmed, T., Caballero, J.M.R.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2019
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/188430
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:A family of doubly stochastic matrices involving Chebyshev polynomials / T. Ahmed, J.M.R. Caballero // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 155–164. — Бібліогр.: 2 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine