A family of doubly stochastic matrices involving Chebyshev polynomials
A doubly stochastic matrix is a square matrix A = (aij) of non-negative real numbers such that ∑i aij =∑j aij =1. The Chebyshev polynomial of the first kind is defined by the recurrence relation T₀ (x) = 1, T₁ (x) = x, and Tn+1(x) = 2xTn(x) − Tn−1(x). In this paper, we show a 2ᵏ ×2ᵏ (for each intege...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2019 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2019
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/188430 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | A family of doubly stochastic matrices involving Chebyshev polynomials / T. Ahmed, J.M.R. Caballero // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 155–164. — Бібліогр.: 2 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineBe the first to leave a comment!