Automorphism groups of superextensions of finite monogenic semigroups

A family L of subsets of a set X is called linked if A ∩ B ≠ ∅ for any A,B ∈ L. A linked family M of subsets of X is maximal linked if M coincides with each linked family L on X that contains M. The superextension λ(X) of X consists of all maximal linked families on X. Any associative binary operat...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2019
Автори: Banakh, T.O., Gavrylkiv, V.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/188431
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Automorphism groups of superextensions of finite monogenic semigroups / T.O. Banakh, V.M. Gavrylkiv // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 165–190. — Бібліогр.: 24 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188431
record_format dspace
spelling Banakh, T.O.
Gavrylkiv, V.M.
2023-03-01T15:28:51Z
2023-03-01T15:28:51Z
2019
Automorphism groups of superextensions of finite monogenic semigroups / T.O. Banakh, V.M. Gavrylkiv // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 165–190. — Бібліогр.: 24 назв. — англ.
1726-3255
2010 MSC: 20D45, 20M15, 20B25.
https://nasplib.isofts.kiev.ua/handle/123456789/188431
A family L of subsets of a set X is called linked if A ∩ B ≠ ∅ for any A,B ∈ L. A linked family M of subsets of X is maximal linked if M coincides with each linked family L on X that contains M. The superextension λ(X) of X consists of all maximal linked families on X. Any associative binary operation ∗ : X ×X → X can be extended to an associative binary operation ∗ : λ(X) × λ(X) → λ(X). In the paper we study automorphisms of the superextensions of finite monogenic semigroups and characteristic ideals in such semigroups. In particular, we describe the automorphism groups of the superextensions of finite monogenic semigroups of cardinality 6 5.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Automorphism groups of superextensions of finite monogenic semigroups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Automorphism groups of superextensions of finite monogenic semigroups
spellingShingle Automorphism groups of superextensions of finite monogenic semigroups
Banakh, T.O.
Gavrylkiv, V.M.
title_short Automorphism groups of superextensions of finite monogenic semigroups
title_full Automorphism groups of superextensions of finite monogenic semigroups
title_fullStr Automorphism groups of superextensions of finite monogenic semigroups
title_full_unstemmed Automorphism groups of superextensions of finite monogenic semigroups
title_sort automorphism groups of superextensions of finite monogenic semigroups
author Banakh, T.O.
Gavrylkiv, V.M.
author_facet Banakh, T.O.
Gavrylkiv, V.M.
publishDate 2019
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description A family L of subsets of a set X is called linked if A ∩ B ≠ ∅ for any A,B ∈ L. A linked family M of subsets of X is maximal linked if M coincides with each linked family L on X that contains M. The superextension λ(X) of X consists of all maximal linked families on X. Any associative binary operation ∗ : X ×X → X can be extended to an associative binary operation ∗ : λ(X) × λ(X) → λ(X). In the paper we study automorphisms of the superextensions of finite monogenic semigroups and characteristic ideals in such semigroups. In particular, we describe the automorphism groups of the superextensions of finite monogenic semigroups of cardinality 6 5.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188431
citation_txt Automorphism groups of superextensions of finite monogenic semigroups / T.O. Banakh, V.M. Gavrylkiv // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 165–190. — Бібліогр.: 24 назв. — англ.
work_keys_str_mv AT banakhto automorphismgroupsofsuperextensionsoffinitemonogenicsemigroups
AT gavrylkivvm automorphismgroupsofsuperextensionsoffinitemonogenicsemigroups
first_indexed 2025-12-07T21:06:33Z
last_indexed 2025-12-07T21:06:33Z
_version_ 1850885111964237824