On cospectral signed digraphs
The set of distinct eigenvalues of a signed digraph S together with their respective multiplicities is called its spectrum. Two signed digraphs of same order are said to be cospectral if they have the same spectrum. In this paper, we show the existence of integral, real and Gaussian cospectral signe...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2019 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2019
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/188432 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On cospectral signed digraphs / M.A. Bhat, T.A. Naikoo, S. Pirzada // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 191–201. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188432 |
|---|---|
| record_format |
dspace |
| spelling |
Bhat, M.A. Naikoo, T.A. Pirzada, S. 2023-03-01T15:32:26Z 2023-03-01T15:32:26Z 2019 On cospectral signed digraphs / M.A. Bhat, T.A. Naikoo, S. Pirzada // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 191–201. — Бібліогр.: 10 назв. — англ. 1726-3255 2010 MSC: 05C30, 05C50. https://nasplib.isofts.kiev.ua/handle/123456789/188432 The set of distinct eigenvalues of a signed digraph S together with their respective multiplicities is called its spectrum. Two signed digraphs of same order are said to be cospectral if they have the same spectrum. In this paper, we show the existence of integral, real and Gaussian cospectral signed digraphs. We give a spectral characterization of normal signed digraphs and use it to construct cospectral normal signed digraphs. This research is supported by the DST, New Delhi research project. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics On cospectral signed digraphs Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On cospectral signed digraphs |
| spellingShingle |
On cospectral signed digraphs Bhat, M.A. Naikoo, T.A. Pirzada, S. |
| title_short |
On cospectral signed digraphs |
| title_full |
On cospectral signed digraphs |
| title_fullStr |
On cospectral signed digraphs |
| title_full_unstemmed |
On cospectral signed digraphs |
| title_sort |
on cospectral signed digraphs |
| author |
Bhat, M.A. Naikoo, T.A. Pirzada, S. |
| author_facet |
Bhat, M.A. Naikoo, T.A. Pirzada, S. |
| publishDate |
2019 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
The set of distinct eigenvalues of a signed digraph S together with their respective multiplicities is called its spectrum. Two signed digraphs of same order are said to be cospectral if they have the same spectrum. In this paper, we show the existence of integral, real and Gaussian cospectral signed digraphs. We give a spectral characterization of normal signed digraphs and use it to construct cospectral normal signed digraphs.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188432 |
| citation_txt |
On cospectral signed digraphs / M.A. Bhat, T.A. Naikoo, S. Pirzada // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 191–201. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT bhatma oncospectralsigneddigraphs AT naikoota oncospectralsigneddigraphs AT pirzadas oncospectralsigneddigraphs |
| first_indexed |
2025-12-07T18:47:10Z |
| last_indexed |
2025-12-07T18:47:10Z |
| _version_ |
1850876342591029248 |