Commutator subgroups of the power subgroups of generalized Hecke groups

Let p, q ≥ 2 be relatively prime integers and let Hp,q be the generalized Hecke group associated to p and q. The generalized Hecke group Hp,q is generated by X(z) = −(z − λp)⁻¹ and Y (z) = −(z + λq)⁻¹ where λp = 2cos π/p and λq = 2 cos π/q.In this paper, for positive integer m, we study the commutat...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2019
Main Authors: Koruoğlu, Ö., Meral, T., Sahin, R.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2019
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/188438
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Commutator subgroups of the power subgroups of generalized Hecke groups/ Ö. Koruoğlu, T. Meral, R. Sahin // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 280–291. — Бібліогр.: 39 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Let p, q ≥ 2 be relatively prime integers and let Hp,q be the generalized Hecke group associated to p and q. The generalized Hecke group Hp,q is generated by X(z) = −(z − λp)⁻¹ and Y (z) = −(z + λq)⁻¹ where λp = 2cos π/p and λq = 2 cos π/q.In this paper, for positive integer m, we study the commutator subgroups (Hᵐp,q)′ of the power subgroups Hᵐp,q of generalized Hecke groups Hp,q. We give an application related with the derived series for all triangle groups of the form (0; p, q, n), for distinct primes p, q and for positive integer n.
ISSN:1726-3255