Commutator subgroups of the power subgroups of generalized Hecke groups
Let p, q ≥ 2 be relatively prime integers and let Hp,q be the generalized Hecke group associated to p and q. The generalized Hecke group Hp,q is generated by X(z) = −(z − λp)⁻¹ and Y (z) = −(z + λq)⁻¹ where λp = 2cos π/p and λq = 2 cos π/q.In this paper, for positive integer m, we study the commutat...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2019 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2019
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/188438 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Commutator subgroups of the power subgroups of generalized Hecke groups/ Ö. Koruoğlu, T. Meral, R. Sahin // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 280–291. — Бібліогр.: 39 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Let p, q ≥ 2 be relatively prime integers and let Hp,q be the generalized Hecke group associated to p and q. The generalized Hecke group Hp,q is generated by X(z) = −(z − λp)⁻¹ and Y (z) = −(z + λq)⁻¹ where λp = 2cos π/p and λq = 2 cos π/q.In this paper, for positive integer m, we study the commutator subgroups (Hᵐp,q)′ of the power subgroups Hᵐp,q of generalized Hecke groups Hp,q. We give an application related with the derived series for all triangle groups of the form (0; p, q, n), for distinct primes p, q and for positive integer n.
|
|---|---|
| ISSN: | 1726-3255 |