Commutator subgroups of the power subgroups of generalized Hecke groups

Let p, q ≥ 2 be relatively prime integers and let Hp,q be the generalized Hecke group associated to p and q. The generalized Hecke group Hp,q is generated by X(z) = −(z − λp)⁻¹ and Y (z) = −(z + λq)⁻¹ where λp = 2cos π/p and λq = 2 cos π/q.In this paper, for positive integer m, we study the commutat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2019
Hauptverfasser: Koruoğlu, Ö., Meral, T., Sahin, R.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2019
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188438
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Commutator subgroups of the power subgroups of generalized Hecke groups/ Ö. Koruoğlu, T. Meral, R. Sahin // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 280–291. — Бібліогр.: 39 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188438
record_format dspace
spelling Koruoğlu, Ö.
Meral, T.
Sahin, R.
2023-03-01T15:52:31Z
2023-03-01T15:52:31Z
2019
Commutator subgroups of the power subgroups of generalized Hecke groups/ Ö. Koruoğlu, T. Meral, R. Sahin // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 280–291. — Бібліогр.: 39 назв. — англ.
1726-3255
2010 MSC: 20H10, 11F06
https://nasplib.isofts.kiev.ua/handle/123456789/188438
Let p, q ≥ 2 be relatively prime integers and let Hp,q be the generalized Hecke group associated to p and q. The generalized Hecke group Hp,q is generated by X(z) = −(z − λp)⁻¹ and Y (z) = −(z + λq)⁻¹ where λp = 2cos π/p and λq = 2 cos π/q.In this paper, for positive integer m, we study the commutator subgroups (Hᵐp,q)′ of the power subgroups Hᵐp,q of generalized Hecke groups Hp,q. We give an application related with the derived series for all triangle groups of the form (0; p, q, n), for distinct primes p, q and for positive integer n.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Commutator subgroups of the power subgroups of generalized Hecke groups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Commutator subgroups of the power subgroups of generalized Hecke groups
spellingShingle Commutator subgroups of the power subgroups of generalized Hecke groups
Koruoğlu, Ö.
Meral, T.
Sahin, R.
title_short Commutator subgroups of the power subgroups of generalized Hecke groups
title_full Commutator subgroups of the power subgroups of generalized Hecke groups
title_fullStr Commutator subgroups of the power subgroups of generalized Hecke groups
title_full_unstemmed Commutator subgroups of the power subgroups of generalized Hecke groups
title_sort commutator subgroups of the power subgroups of generalized hecke groups
author Koruoğlu, Ö.
Meral, T.
Sahin, R.
author_facet Koruoğlu, Ö.
Meral, T.
Sahin, R.
publishDate 2019
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let p, q ≥ 2 be relatively prime integers and let Hp,q be the generalized Hecke group associated to p and q. The generalized Hecke group Hp,q is generated by X(z) = −(z − λp)⁻¹ and Y (z) = −(z + λq)⁻¹ where λp = 2cos π/p and λq = 2 cos π/q.In this paper, for positive integer m, we study the commutator subgroups (Hᵐp,q)′ of the power subgroups Hᵐp,q of generalized Hecke groups Hp,q. We give an application related with the derived series for all triangle groups of the form (0; p, q, n), for distinct primes p, q and for positive integer n.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188438
citation_txt Commutator subgroups of the power subgroups of generalized Hecke groups/ Ö. Koruoğlu, T. Meral, R. Sahin // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 280–291. — Бібліогр.: 39 назв. — англ.
work_keys_str_mv AT koruogluo commutatorsubgroupsofthepowersubgroupsofgeneralizedheckegroups
AT meralt commutatorsubgroupsofthepowersubgroupsofgeneralizedheckegroups
AT sahinr commutatorsubgroupsofthepowersubgroupsofgeneralizedheckegroups
first_indexed 2025-12-07T18:08:12Z
last_indexed 2025-12-07T18:08:12Z
_version_ 1850873890347155456