On the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs

Magic rectangles are a classical generalization of the well-known magic squares, and they are related to graphs. A graph G is called degree-magic if there exists a labelling of the edges by integers 1, 2, . . . , |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2019
Автори: Inpoonjai, P., Jiarasuksakun, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/188480
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs / P. Inpoonjai, T. Jiarasuksakun // Algebra and Discrete Mathematics. — 2019. — Vol. 28, № 1. — С. 107–122. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188480
record_format dspace
spelling Inpoonjai, P.
Jiarasuksakun, T.
2023-03-02T15:26:44Z
2023-03-02T15:26:44Z
2019
On the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs / P. Inpoonjai, T. Jiarasuksakun // Algebra and Discrete Mathematics. — 2019. — Vol. 28, № 1. — С. 107–122. — Бібліогр.: 15 назв. — англ.
1726-3255
2010 MSC: Primary 05C78; Secondary 05B15.
https://nasplib.isofts.kiev.ua/handle/123456789/188480
Magic rectangles are a classical generalization of the well-known magic squares, and they are related to graphs. A graph G is called degree-magic if there exists a labelling of the edges by integers 1, 2, . . . , |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal to (1 + |E(G)|) deg(v)/2. Degree-magic graphs extend supermagic regular graphs. In this paper, we present a general proof of the necessary and sufficient conditions for the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs. We apply this existence to construct supermagic regular graphs and to identify the sufficient condition for even n-tuple magic rectangles to exist.
The authors would like to thank the anonymous referee for careful reading and the helpful comments improving this paper.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs
spellingShingle On the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs
Inpoonjai, P.
Jiarasuksakun, T.
title_short On the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs
title_full On the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs
title_fullStr On the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs
title_full_unstemmed On the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs
title_sort on the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs
author Inpoonjai, P.
Jiarasuksakun, T.
author_facet Inpoonjai, P.
Jiarasuksakun, T.
publishDate 2019
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Magic rectangles are a classical generalization of the well-known magic squares, and they are related to graphs. A graph G is called degree-magic if there exists a labelling of the edges by integers 1, 2, . . . , |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal to (1 + |E(G)|) deg(v)/2. Degree-magic graphs extend supermagic regular graphs. In this paper, we present a general proof of the necessary and sufficient conditions for the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs. We apply this existence to construct supermagic regular graphs and to identify the sufficient condition for even n-tuple magic rectangles to exist.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188480
citation_txt On the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs / P. Inpoonjai, T. Jiarasuksakun // Algebra and Discrete Mathematics. — 2019. — Vol. 28, № 1. — С. 107–122. — Бібліогр.: 15 назв. — англ.
work_keys_str_mv AT inpoonjaip ontheexistenceofdegreemagiclabellingsofthenfoldselfunionofcompletebipartitegraphs
AT jiarasuksakunt ontheexistenceofdegreemagiclabellingsofthenfoldselfunionofcompletebipartitegraphs
first_indexed 2025-12-02T00:31:08Z
last_indexed 2025-12-02T00:31:08Z
_version_ 1850861228791955456