Strongly prime submodules and strongly 0-dimensional modules
In this work, we study strongly prime submodules and strongly 0-dimensional modules. We give some equivalent conditions for being a strongly 0-dimensional module. Besides we show that the quasi-Zariski topology on the spectrum of a strongly 0-dimensional module satisfies all separation axioms and it...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2019 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2019
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/188486 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Strongly prime submodules and strongly 0-dimensional modules / Z. Bilgin, S. Koç, N.A. Özkirişci // Algebra and Discrete Mathematics. — 2019. — Vol. 28, № 2. — С. 171–183. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188486 |
|---|---|
| record_format |
dspace |
| spelling |
Bilgin, Z. Koç, S. Özkirişci, N.A. 2023-03-02T19:10:47Z 2023-03-02T19:10:47Z 2019 Strongly prime submodules and strongly 0-dimensional modules / Z. Bilgin, S. Koç, N.A. Özkirişci // Algebra and Discrete Mathematics. — 2019. — Vol. 28, № 2. — С. 171–183. — Бібліогр.: 16 назв. — англ. 1726-3255 2010 MSC: Primary 13A15, 13A99, 13C05, 13C99; Secondary 13E15, 13E99. https://nasplib.isofts.kiev.ua/handle/123456789/188486 In this work, we study strongly prime submodules and strongly 0-dimensional modules. We give some equivalent conditions for being a strongly 0-dimensional module. Besides we show that the quasi-Zariski topology on the spectrum of a strongly 0-dimensional module satisfies all separation axioms and it is a metrizable space. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Strongly prime submodules and strongly 0-dimensional modules Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Strongly prime submodules and strongly 0-dimensional modules |
| spellingShingle |
Strongly prime submodules and strongly 0-dimensional modules Bilgin, Z. Koç, S. Özkirişci, N.A. |
| title_short |
Strongly prime submodules and strongly 0-dimensional modules |
| title_full |
Strongly prime submodules and strongly 0-dimensional modules |
| title_fullStr |
Strongly prime submodules and strongly 0-dimensional modules |
| title_full_unstemmed |
Strongly prime submodules and strongly 0-dimensional modules |
| title_sort |
strongly prime submodules and strongly 0-dimensional modules |
| author |
Bilgin, Z. Koç, S. Özkirişci, N.A. |
| author_facet |
Bilgin, Z. Koç, S. Özkirişci, N.A. |
| publishDate |
2019 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
In this work, we study strongly prime submodules and strongly 0-dimensional modules. We give some equivalent conditions for being a strongly 0-dimensional module. Besides we show that the quasi-Zariski topology on the spectrum of a strongly 0-dimensional module satisfies all separation axioms and it is a metrizable space.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188486 |
| citation_txt |
Strongly prime submodules and strongly 0-dimensional modules / Z. Bilgin, S. Koç, N.A. Özkirişci // Algebra and Discrete Mathematics. — 2019. — Vol. 28, № 2. — С. 171–183. — Бібліогр.: 16 назв. — англ. |
| work_keys_str_mv |
AT bilginz stronglyprimesubmodulesandstrongly0dimensionalmodules AT kocs stronglyprimesubmodulesandstrongly0dimensionalmodules AT ozkiriscina stronglyprimesubmodulesandstrongly0dimensionalmodules |
| first_indexed |
2025-12-07T15:59:43Z |
| last_indexed |
2025-12-07T15:59:43Z |
| _version_ |
1850865806877917184 |