A simplified proof of the reduction point crossing sign formula for Verma modules

The Unitary Dual Problem is one of the most important open problems in mathematics: classify the irreducible unitary representations of a group. That is, classify all irreducible representations admitting a definite invariant Hermitian form. Signatures of invariant Hermitian forms on Verma modules a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2019
Hauptverfasser: Denis, M.St., Yee, W.L.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2019
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188488
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A simplified proof of the reduction point crossing sign formula for Verma modules / M.St. Denis, W.L. Yee // Algebra and Discrete Mathematics. — 2019. — Vol. 28, № 2. — С. 195–202. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188488
record_format dspace
spelling Denis, M.St.
Yee, W.L.
2023-03-02T19:17:03Z
2023-03-02T19:17:03Z
2019
A simplified proof of the reduction point crossing sign formula for Verma modules / M.St. Denis, W.L. Yee // Algebra and Discrete Mathematics. — 2019. — Vol. 28, № 2. — С. 195–202. — Бібліогр.: 7 назв. — англ.
1726-3255
2010 MSC: 22E50, 05E10
https://nasplib.isofts.kiev.ua/handle/123456789/188488
The Unitary Dual Problem is one of the most important open problems in mathematics: classify the irreducible unitary representations of a group. That is, classify all irreducible representations admitting a definite invariant Hermitian form. Signatures of invariant Hermitian forms on Verma modules are important to finding the unitary dual of a real reductive Lie group. By a philosophy of Vogan introduced in [Vog84], signatures of invariant Hermitian forms on irreducible Verma modules may be computed by varying the highest weight and tracking how signatures change at reducibility points (see [Yee05]). At each reducibility point there is a sign ε governing how the signature changes. A formula for ε was first determined in [Yee05] and simplified in [Yee19]. The proof of the simplification was complicated. We simplify the proof in this note.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
A simplified proof of the reduction point crossing sign formula for Verma modules
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A simplified proof of the reduction point crossing sign formula for Verma modules
spellingShingle A simplified proof of the reduction point crossing sign formula for Verma modules
Denis, M.St.
Yee, W.L.
title_short A simplified proof of the reduction point crossing sign formula for Verma modules
title_full A simplified proof of the reduction point crossing sign formula for Verma modules
title_fullStr A simplified proof of the reduction point crossing sign formula for Verma modules
title_full_unstemmed A simplified proof of the reduction point crossing sign formula for Verma modules
title_sort simplified proof of the reduction point crossing sign formula for verma modules
author Denis, M.St.
Yee, W.L.
author_facet Denis, M.St.
Yee, W.L.
publishDate 2019
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description The Unitary Dual Problem is one of the most important open problems in mathematics: classify the irreducible unitary representations of a group. That is, classify all irreducible representations admitting a definite invariant Hermitian form. Signatures of invariant Hermitian forms on Verma modules are important to finding the unitary dual of a real reductive Lie group. By a philosophy of Vogan introduced in [Vog84], signatures of invariant Hermitian forms on irreducible Verma modules may be computed by varying the highest weight and tracking how signatures change at reducibility points (see [Yee05]). At each reducibility point there is a sign ε governing how the signature changes. A formula for ε was first determined in [Yee05] and simplified in [Yee19]. The proof of the simplification was complicated. We simplify the proof in this note.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188488
citation_txt A simplified proof of the reduction point crossing sign formula for Verma modules / M.St. Denis, W.L. Yee // Algebra and Discrete Mathematics. — 2019. — Vol. 28, № 2. — С. 195–202. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT denismst asimplifiedproofofthereductionpointcrossingsignformulaforvermamodules
AT yeewl asimplifiedproofofthereductionpointcrossingsignformulaforvermamodules
AT denismst simplifiedproofofthereductionpointcrossingsignformulaforvermamodules
AT yeewl simplifiedproofofthereductionpointcrossingsignformulaforvermamodules
first_indexed 2025-12-07T18:43:40Z
last_indexed 2025-12-07T18:43:40Z
_version_ 1850876122602930176