Adjoint functors, preradicals and closure operators in module categories
In this article preradicals and closure operators are studied in an adjoint situation, defined by two covariant functors between the module categories R-Mod and S-Mod. The mappings which determine the relationship between the classes of preradicals and the classes of closure operators of these categ...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2019 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2019
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/188493 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Adjoint functors, preradicals and closure operators in module categories / A.I. Kashu // Algebra and Discrete Mathematics. — 2019. — Vol. 28, № 2. — С. 260–277. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188493 |
|---|---|
| record_format |
dspace |
| spelling |
Kashu, A.I. 2023-03-02T19:28:41Z 2023-03-02T19:28:41Z 2019 Adjoint functors, preradicals and closure operators in module categories / A.I. Kashu // Algebra and Discrete Mathematics. — 2019. — Vol. 28, № 2. — С. 260–277. — Бібліогр.: 11 назв. — англ. 1726-3255 2010 MSC: 16D90, 16S90, 18A40, 18E40 06A15 https://nasplib.isofts.kiev.ua/handle/123456789/188493 In this article preradicals and closure operators are studied in an adjoint situation, defined by two covariant functors between the module categories R-Mod and S-Mod. The mappings which determine the relationship between the classes of preradicals and the classes of closure operators of these categories are investigated. The goal of research is to elucidate the concordance (compatibility) of these mappings. For that some combinations of them, consisting of four mappings, are considered and the commutativity of corresponding diagrams (squares) is studied. The obtained results show the connection between considered mappings in adjoint situation. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Adjoint functors, preradicals and closure operators in module categories Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Adjoint functors, preradicals and closure operators in module categories |
| spellingShingle |
Adjoint functors, preradicals and closure operators in module categories Kashu, A.I. |
| title_short |
Adjoint functors, preradicals and closure operators in module categories |
| title_full |
Adjoint functors, preradicals and closure operators in module categories |
| title_fullStr |
Adjoint functors, preradicals and closure operators in module categories |
| title_full_unstemmed |
Adjoint functors, preradicals and closure operators in module categories |
| title_sort |
adjoint functors, preradicals and closure operators in module categories |
| author |
Kashu, A.I. |
| author_facet |
Kashu, A.I. |
| publishDate |
2019 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
In this article preradicals and closure operators are studied in an adjoint situation, defined by two covariant functors between the module categories R-Mod and S-Mod. The mappings which determine the relationship between the classes of preradicals and the classes of closure operators of these categories are investigated. The goal of research is to elucidate the concordance (compatibility) of these mappings. For that some combinations of them, consisting of four mappings, are considered and the commutativity of corresponding diagrams (squares) is studied. The obtained results show the connection between considered mappings in adjoint situation.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188493 |
| citation_txt |
Adjoint functors, preradicals and closure operators in module categories / A.I. Kashu // Algebra and Discrete Mathematics. — 2019. — Vol. 28, № 2. — С. 260–277. — Бібліогр.: 11 назв. — англ. |
| work_keys_str_mv |
AT kashuai adjointfunctorspreradicalsandclosureoperatorsinmodulecategories |
| first_indexed |
2025-12-07T18:10:38Z |
| last_indexed |
2025-12-07T18:10:38Z |
| _version_ |
1850874044341026816 |