Adjoint functors, preradicals and closure operators in module categories

In this article preradicals and closure operators are studied in an adjoint situation, defined by two covariant functors between the module categories R-Mod and S-Mod. The mappings which determine the relationship between the classes of preradicals and the classes of closure operators of these categ...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2019
Автор: Kashu, A.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/188493
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Adjoint functors, preradicals and closure operators in module categories / A.I. Kashu // Algebra and Discrete Mathematics. — 2019. — Vol. 28, № 2. — С. 260–277. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188493
record_format dspace
spelling Kashu, A.I.
2023-03-02T19:28:41Z
2023-03-02T19:28:41Z
2019
Adjoint functors, preradicals and closure operators in module categories / A.I. Kashu // Algebra and Discrete Mathematics. — 2019. — Vol. 28, № 2. — С. 260–277. — Бібліогр.: 11 назв. — англ.
1726-3255
2010 MSC: 16D90, 16S90, 18A40, 18E40 06A15
https://nasplib.isofts.kiev.ua/handle/123456789/188493
In this article preradicals and closure operators are studied in an adjoint situation, defined by two covariant functors between the module categories R-Mod and S-Mod. The mappings which determine the relationship between the classes of preradicals and the classes of closure operators of these categories are investigated. The goal of research is to elucidate the concordance (compatibility) of these mappings. For that some combinations of them, consisting of four mappings, are considered and the commutativity of corresponding diagrams (squares) is studied. The obtained results show the connection between considered mappings in adjoint situation.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Adjoint functors, preradicals and closure operators in module categories
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Adjoint functors, preradicals and closure operators in module categories
spellingShingle Adjoint functors, preradicals and closure operators in module categories
Kashu, A.I.
title_short Adjoint functors, preradicals and closure operators in module categories
title_full Adjoint functors, preradicals and closure operators in module categories
title_fullStr Adjoint functors, preradicals and closure operators in module categories
title_full_unstemmed Adjoint functors, preradicals and closure operators in module categories
title_sort adjoint functors, preradicals and closure operators in module categories
author Kashu, A.I.
author_facet Kashu, A.I.
publishDate 2019
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description In this article preradicals and closure operators are studied in an adjoint situation, defined by two covariant functors between the module categories R-Mod and S-Mod. The mappings which determine the relationship between the classes of preradicals and the classes of closure operators of these categories are investigated. The goal of research is to elucidate the concordance (compatibility) of these mappings. For that some combinations of them, consisting of four mappings, are considered and the commutativity of corresponding diagrams (squares) is studied. The obtained results show the connection between considered mappings in adjoint situation.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188493
citation_txt Adjoint functors, preradicals and closure operators in module categories / A.I. Kashu // Algebra and Discrete Mathematics. — 2019. — Vol. 28, № 2. — С. 260–277. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT kashuai adjointfunctorspreradicalsandclosureoperatorsinmodulecategories
first_indexed 2025-12-07T18:10:38Z
last_indexed 2025-12-07T18:10:38Z
_version_ 1850874044341026816