An OD-characterizable class of simple groups
It is proved that nonabelian finite simple groups S with max π(S) = 37 are uniquely determined by their order and degree pattern in the class of all finite groups.
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2020 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2020
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/188500 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | An OD-characterizable class of simple groups / M. Akbari, X.Y. Chen, A.R. Moghaddamfar // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 42–51. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188500 |
|---|---|
| record_format |
dspace |
| spelling |
Akbari, M. Chen, X.Y. Moghaddamfar, A.R. 2023-03-03T15:46:37Z 2023-03-03T15:46:37Z 2020 An OD-characterizable class of simple groups / M. Akbari, X.Y. Chen, A.R. Moghaddamfar // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 42–51. — Бібліогр.: 15 назв. — англ. 1726-3255 DOI:10.12958/adm611 2010 MSC: 20D05, 20D06, 20D08. https://nasplib.isofts.kiev.ua/handle/123456789/188500 It is proved that nonabelian finite simple groups S with max π(S) = 37 are uniquely determined by their order and degree pattern in the class of all finite groups. This work was done during the second and third authors had a visiting position at the Department of Mathematical Sciences, Kent State University, USA. They would like to thank the hospitality of the Department of Mathematical Sciences of KSU. The second author was supported by the Fund for Young Key Teachers of Henan University of Technology, the Fund of Henan Administration of Foreign Experts Affairs, the Project of Henan Province (182102410049), and the NSFC (11926330, 11926326, 11971189, 11771356). en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics An OD-characterizable class of simple groups Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
An OD-characterizable class of simple groups |
| spellingShingle |
An OD-characterizable class of simple groups Akbari, M. Chen, X.Y. Moghaddamfar, A.R. |
| title_short |
An OD-characterizable class of simple groups |
| title_full |
An OD-characterizable class of simple groups |
| title_fullStr |
An OD-characterizable class of simple groups |
| title_full_unstemmed |
An OD-characterizable class of simple groups |
| title_sort |
od-characterizable class of simple groups |
| author |
Akbari, M. Chen, X.Y. Moghaddamfar, A.R. |
| author_facet |
Akbari, M. Chen, X.Y. Moghaddamfar, A.R. |
| publishDate |
2020 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
It is proved that nonabelian finite simple groups S with max π(S) = 37 are uniquely determined by their order and degree pattern in the class of all finite groups.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188500 |
| citation_txt |
An OD-characterizable class of simple groups / M. Akbari, X.Y. Chen, A.R. Moghaddamfar // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 42–51. — Бібліогр.: 15 назв. — англ. |
| work_keys_str_mv |
AT akbarim anodcharacterizableclassofsimplegroups AT chenxy anodcharacterizableclassofsimplegroups AT moghaddamfarar anodcharacterizableclassofsimplegroups AT akbarim odcharacterizableclassofsimplegroups AT chenxy odcharacterizableclassofsimplegroups AT moghaddamfarar odcharacterizableclassofsimplegroups |
| first_indexed |
2025-12-07T16:13:58Z |
| last_indexed |
2025-12-07T16:13:58Z |
| _version_ |
1850866703890644992 |