Finite groups with semi-subnormal Schmidt subgroups

A Schmidt group is a non-nilpotent group in which every proper subgroup is nilpotent. A subgroup A of a group G is semi-normal in G if there exists a subgroup B of G such that G = AB and AB1 is a proper subgroup of G for every proper subgroup B1 of B. If A is either subnormal in G or is semi-normal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2020
Hauptverfasser: Kniahina, V.N., Monakhov, V.S.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2020
Schriftenreihe:Algebra and Discrete Mathematics
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188502
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Finite groups with semi-subnormal Schmidt subgroups / V.N. Kniahina, V.S. Monakhov // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 66–73. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:A Schmidt group is a non-nilpotent group in which every proper subgroup is nilpotent. A subgroup A of a group G is semi-normal in G if there exists a subgroup B of G such that G = AB and AB1 is a proper subgroup of G for every proper subgroup B1 of B. If A is either subnormal in G or is semi-normal in G, then A is called a semi-subnormal subgroup of G. In this paper, we establish that a group G with semi-subnormal Schmidt {2, 3}-subgroups is 3-soluble. Moreover, if all 5-closed Schmidt {2, 5}-subgroups are semi-subnormal in G, then G is soluble. We prove that a group with semi-subnormal Schmidt subgroups is metanilpotent.