On the non–periodic groups, whose subgroups of infinite special rank are transitively normal
This paper devoted to the non-periodic locally generalized radical groups, whose subgroups of infinite special rank are transitively normal. We proved that if such a group G includes an ascendant locally nilpotent subgroup of infinite special rank, then G is abelian.
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2020 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2020
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/188503 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On the non–periodic groups, whose subgroups of infinite special rank are transitively normal / L.A. Kurdachenko, I.Ya. Subbotin, T.V. Velychko // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 74–84. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188503 |
|---|---|
| record_format |
dspace |
| spelling |
Kurdachenko, L.A. Subbotin, I.Ya. Velychko, T.V. 2023-03-03T15:55:18Z 2023-03-03T15:55:18Z 2020 On the non–periodic groups, whose subgroups of infinite special rank are transitively normal / L.A. Kurdachenko, I.Ya. Subbotin, T.V. Velychko // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 74–84. — Бібліогр.: 16 назв. — англ. 1726-3255 DOI:10.12958/adm1357 2010 MSC: Primary 20E15, 20F16; Secondary 20E25, 20E34, 20F22, 20F50. https://nasplib.isofts.kiev.ua/handle/123456789/188503 This paper devoted to the non-periodic locally generalized radical groups, whose subgroups of infinite special rank are transitively normal. We proved that if such a group G includes an ascendant locally nilpotent subgroup of infinite special rank, then G is abelian. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics On the non–periodic groups, whose subgroups of infinite special rank are transitively normal Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On the non–periodic groups, whose subgroups of infinite special rank are transitively normal |
| spellingShingle |
On the non–periodic groups, whose subgroups of infinite special rank are transitively normal Kurdachenko, L.A. Subbotin, I.Ya. Velychko, T.V. |
| title_short |
On the non–periodic groups, whose subgroups of infinite special rank are transitively normal |
| title_full |
On the non–periodic groups, whose subgroups of infinite special rank are transitively normal |
| title_fullStr |
On the non–periodic groups, whose subgroups of infinite special rank are transitively normal |
| title_full_unstemmed |
On the non–periodic groups, whose subgroups of infinite special rank are transitively normal |
| title_sort |
on the non–periodic groups, whose subgroups of infinite special rank are transitively normal |
| author |
Kurdachenko, L.A. Subbotin, I.Ya. Velychko, T.V. |
| author_facet |
Kurdachenko, L.A. Subbotin, I.Ya. Velychko, T.V. |
| publishDate |
2020 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
This paper devoted to the non-periodic locally generalized radical groups, whose subgroups of infinite special rank are transitively normal. We proved that if such a group G includes an ascendant locally nilpotent subgroup of infinite special rank, then G is abelian.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188503 |
| citation_txt |
On the non–periodic groups, whose subgroups of infinite special rank are transitively normal / L.A. Kurdachenko, I.Ya. Subbotin, T.V. Velychko // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 74–84. — Бібліогр.: 16 назв. — англ. |
| work_keys_str_mv |
AT kurdachenkola onthenonperiodicgroupswhosesubgroupsofinfinitespecialrankaretransitivelynormal AT subbotiniya onthenonperiodicgroupswhosesubgroupsofinfinitespecialrankaretransitivelynormal AT velychkotv onthenonperiodicgroupswhosesubgroupsofinfinitespecialrankaretransitivelynormal |
| first_indexed |
2025-12-07T13:39:10Z |
| last_indexed |
2025-12-07T13:39:10Z |
| _version_ |
1850856964563664896 |