On the non–periodic groups, whose subgroups of infinite special rank are transitively normal

This paper devoted to the non-periodic locally generalized radical groups, whose subgroups of infinite special rank are transitively normal. We proved that if such a group G includes an ascendant locally nilpotent subgroup of infinite special rank, then G is abelian.

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2020
Main Authors: Kurdachenko, L.A., Subbotin, I.Ya., Velychko, T.V.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2020
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/188503
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On the non–periodic groups, whose subgroups of infinite special rank are transitively normal / L.A. Kurdachenko, I.Ya. Subbotin, T.V. Velychko // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 74–84. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188503
record_format dspace
spelling Kurdachenko, L.A.
Subbotin, I.Ya.
Velychko, T.V.
2023-03-03T15:55:18Z
2023-03-03T15:55:18Z
2020
On the non–periodic groups, whose subgroups of infinite special rank are transitively normal / L.A. Kurdachenko, I.Ya. Subbotin, T.V. Velychko // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 74–84. — Бібліогр.: 16 назв. — англ.
1726-3255
DOI:10.12958/adm1357
2010 MSC: Primary 20E15, 20F16; Secondary 20E25, 20E34, 20F22, 20F50.
https://nasplib.isofts.kiev.ua/handle/123456789/188503
This paper devoted to the non-periodic locally generalized radical groups, whose subgroups of infinite special rank are transitively normal. We proved that if such a group G includes an ascendant locally nilpotent subgroup of infinite special rank, then G is abelian.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On the non–periodic groups, whose subgroups of infinite special rank are transitively normal
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the non–periodic groups, whose subgroups of infinite special rank are transitively normal
spellingShingle On the non–periodic groups, whose subgroups of infinite special rank are transitively normal
Kurdachenko, L.A.
Subbotin, I.Ya.
Velychko, T.V.
title_short On the non–periodic groups, whose subgroups of infinite special rank are transitively normal
title_full On the non–periodic groups, whose subgroups of infinite special rank are transitively normal
title_fullStr On the non–periodic groups, whose subgroups of infinite special rank are transitively normal
title_full_unstemmed On the non–periodic groups, whose subgroups of infinite special rank are transitively normal
title_sort on the non–periodic groups, whose subgroups of infinite special rank are transitively normal
author Kurdachenko, L.A.
Subbotin, I.Ya.
Velychko, T.V.
author_facet Kurdachenko, L.A.
Subbotin, I.Ya.
Velychko, T.V.
publishDate 2020
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description This paper devoted to the non-periodic locally generalized radical groups, whose subgroups of infinite special rank are transitively normal. We proved that if such a group G includes an ascendant locally nilpotent subgroup of infinite special rank, then G is abelian.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188503
citation_txt On the non–periodic groups, whose subgroups of infinite special rank are transitively normal / L.A. Kurdachenko, I.Ya. Subbotin, T.V. Velychko // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 74–84. — Бібліогр.: 16 назв. — англ.
work_keys_str_mv AT kurdachenkola onthenonperiodicgroupswhosesubgroupsofinfinitespecialrankaretransitivelynormal
AT subbotiniya onthenonperiodicgroupswhosesubgroupsofinfinitespecialrankaretransitivelynormal
AT velychkotv onthenonperiodicgroupswhosesubgroupsofinfinitespecialrankaretransitivelynormal
first_indexed 2025-12-07T13:39:10Z
last_indexed 2025-12-07T13:39:10Z
_version_ 1850856964563664896