Group of continuous transformations of real interval preserving tails of G₂-representation of numbers
In the paper, we consider a two-symbol system of encoding for real numbers with two bases having different signs g₀ < 1 and g₁ = g₀ − 1. Transformations (bijections of the set to itself) of interval [0, g₀] preserving tails of this representation of numbers are studied. We prove constructively th...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2020 |
| Hauptverfasser: | Pratsiovytyi, M.V., Lysenko, I.M., Maslova, Yu.P. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2020
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/188505 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Group of continuous transformations of real interval preserving tails of G₂-representation of numbers / M.V. Pratsiovytyi, I.M. Lysenko, Yu.P. Maslova // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 99–108. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Group of continuous transformations of real interval preserving tails of \(G_2\)-representation of numbers
von: Pratsiovytyi, M. V., et al.
Veröffentlicht: (2020) -
Transformations of (0,1] preserving tails of Δμ-representation of numbers
von: Isaieva, T.M., et al.
Veröffentlicht: (2016) -
Transformations of \((0,1]\) preserving tails of \(\Delta^{\mu}\)-representation of numbers
von: Isaieva, Tetiana M., et al.
Veröffentlicht: (2016) -
A group of continuous transformations of a region |0; 1| that preserve the frequency of the digits in Qs-representation of a number
von: Yu. Osaulenko
Veröffentlicht: (2016) -
The formulas for real and imaginary parts of tails of approximants for branched continued fractions of the special form
von: T. M. Antonova, et al.
Veröffentlicht: (2019)