Linear groups saturated by subgroups of finite central dimension
Let F be a field, A be a vector space over F and G be a subgroup of GL(F,A). We say that G has a dense family of subgroups, having finite central dimension, if for every pair of subgroups H, K of G such that H ≤ K and H is not maximal in K there exists a subgroup L of finite central dimension such t...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2020 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2020
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/188507 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Linear groups saturated by subgroups of finite central dimension / N.N. Semko, L.V. Skaskiv, O.A. Yarovaya // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 117–128. — Бібліогр.: 29 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188507 |
|---|---|
| record_format |
dspace |
| spelling |
Semko, N.N. Skaskiv, L.V. Yarovaya, O.A. 2023-03-03T16:06:10Z 2023-03-03T16:06:10Z 2020 Linear groups saturated by subgroups of finite central dimension / N.N. Semko, L.V. Skaskiv, O.A. Yarovaya // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 117–128. — Бібліогр.: 29 назв. — англ. 1726-3255 DOI:10.12958/adm1317 2010 MSC: Primary 20E15, 20F16; Secondary 20E25, 20E34, 20F22, 20F50 https://nasplib.isofts.kiev.ua/handle/123456789/188507 Let F be a field, A be a vector space over F and G be a subgroup of GL(F,A). We say that G has a dense family of subgroups, having finite central dimension, if for every pair of subgroups H, K of G such that H ≤ K and H is not maximal in K there exists a subgroup L of finite central dimension such that H ≤ L ≤ K. In this paper we study some locally soluble linear groups with a dense family of subgroups, having finite central dimension. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Linear groups saturated by subgroups of finite central dimension Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Linear groups saturated by subgroups of finite central dimension |
| spellingShingle |
Linear groups saturated by subgroups of finite central dimension Semko, N.N. Skaskiv, L.V. Yarovaya, O.A. |
| title_short |
Linear groups saturated by subgroups of finite central dimension |
| title_full |
Linear groups saturated by subgroups of finite central dimension |
| title_fullStr |
Linear groups saturated by subgroups of finite central dimension |
| title_full_unstemmed |
Linear groups saturated by subgroups of finite central dimension |
| title_sort |
linear groups saturated by subgroups of finite central dimension |
| author |
Semko, N.N. Skaskiv, L.V. Yarovaya, O.A. |
| author_facet |
Semko, N.N. Skaskiv, L.V. Yarovaya, O.A. |
| publishDate |
2020 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Let F be a field, A be a vector space over F and G be a subgroup of GL(F,A). We say that G has a dense family of subgroups, having finite central dimension, if for every pair of subgroups H, K of G such that H ≤ K and H is not maximal in K there exists a subgroup L of finite central dimension such that H ≤ L ≤ K. In this paper we study some locally soluble linear groups with a dense family of subgroups, having finite central dimension.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188507 |
| citation_txt |
Linear groups saturated by subgroups of finite central dimension / N.N. Semko, L.V. Skaskiv, O.A. Yarovaya // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 117–128. — Бібліогр.: 29 назв. — англ. |
| work_keys_str_mv |
AT semkonn lineargroupssaturatedbysubgroupsoffinitecentraldimension AT skaskivlv lineargroupssaturatedbysubgroupsoffinitecentraldimension AT yarovayaoa lineargroupssaturatedbysubgroupsoffinitecentraldimension |
| first_indexed |
2025-12-07T18:31:48Z |
| last_indexed |
2025-12-07T18:31:48Z |
| _version_ |
1850875375425421312 |