Sets of prime power order generators of finite groups

A subset X of prime power order elements of a finite group G is called pp-independent if there is no proper subset Y of X such that 〈Y,Ф(G)〉 = 〈X,Ф(G)〉, where Ф(G) is the Frattini subgroup of G. A group G has property Bpp if all pp-independent generating sets of G have the same size. G has the pp-ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2020
1. Verfasser: Stocka, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2020
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188508
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Sets of prime power order generators of finite groups / A. Stocka // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 129–138. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188508
record_format dspace
spelling Stocka, A.
2023-03-03T16:08:50Z
2023-03-03T16:08:50Z
2020
Sets of prime power order generators of finite groups / A. Stocka // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 129–138. — Бібліогр.: 12 назв. — англ.
1726-3255
DOI:10.12958/adm1479
2010 MSC: Primary 20D10; Secondary 20F05
https://nasplib.isofts.kiev.ua/handle/123456789/188508
A subset X of prime power order elements of a finite group G is called pp-independent if there is no proper subset Y of X such that 〈Y,Ф(G)〉 = 〈X,Ф(G)〉, where Ф(G) is the Frattini subgroup of G. A group G has property Bpp if all pp-independent generating sets of G have the same size. G has the pp-basis exchange property if for any pp-independent generating sets B₁,B₂ of G and x ∈ B₁ there exists y ∈ B₂ such that (B₁ \ {x}) ∪ {y} is a pp-independent generating set of G. In this paper we describe all finite solvable groups with property Bpp and all finite solvable groups with the pp-basis exchange property.
This article has received financial support from the Polish Ministry of Science and Higher Education under subsidy for maintaining the research potential of the Faculty of Mathematics and Informatics, University of Białystok.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Sets of prime power order generators of finite groups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Sets of prime power order generators of finite groups
spellingShingle Sets of prime power order generators of finite groups
Stocka, A.
title_short Sets of prime power order generators of finite groups
title_full Sets of prime power order generators of finite groups
title_fullStr Sets of prime power order generators of finite groups
title_full_unstemmed Sets of prime power order generators of finite groups
title_sort sets of prime power order generators of finite groups
author Stocka, A.
author_facet Stocka, A.
publishDate 2020
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description A subset X of prime power order elements of a finite group G is called pp-independent if there is no proper subset Y of X such that 〈Y,Ф(G)〉 = 〈X,Ф(G)〉, where Ф(G) is the Frattini subgroup of G. A group G has property Bpp if all pp-independent generating sets of G have the same size. G has the pp-basis exchange property if for any pp-independent generating sets B₁,B₂ of G and x ∈ B₁ there exists y ∈ B₂ such that (B₁ \ {x}) ∪ {y} is a pp-independent generating set of G. In this paper we describe all finite solvable groups with property Bpp and all finite solvable groups with the pp-basis exchange property.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188508
citation_txt Sets of prime power order generators of finite groups / A. Stocka // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 129–138. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT stockaa setsofprimepowerordergeneratorsoffinitegroups
first_indexed 2025-12-07T20:59:35Z
last_indexed 2025-12-07T20:59:35Z
_version_ 1850884673430880256