Normal high order elements in finite field extensions based on the cyclotomic polynomials

We consider elements which are both of high multiplicative order and normal in extensions Fqm of the field Fq. If the extension is defined by a cyclotomic polynomial, we construct such elements explicitly and give explicit lower bounds on their orders.

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2020
Main Authors: Popovych, R., Skuratovskii, R.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2020
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/188518
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Normal high order elements in finite field extensions based on the cyclotomic polynomials / R. Popovych, R. Skuratovskii // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 241–248. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188518
record_format dspace
spelling Popovych, R.
Skuratovskii, R.
2023-03-03T19:50:31Z
2023-03-03T19:50:31Z
2020
Normal high order elements in finite field extensions based on the cyclotomic polynomials / R. Popovych, R. Skuratovskii // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 241–248. — Бібліогр.: 9 назв. — англ.
1726-3255
DOI:10.12958/adm1117
2010 MSC: 11T30.
https://nasplib.isofts.kiev.ua/handle/123456789/188518
We consider elements which are both of high multiplicative order and normal in extensions Fqm of the field Fq. If the extension is defined by a cyclotomic polynomial, we construct such elements explicitly and give explicit lower bounds on their orders.
The authors are grateful to the referee for comments and suggestions which improved the quality of this paper.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Normal high order elements in finite field extensions based on the cyclotomic polynomials
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Normal high order elements in finite field extensions based on the cyclotomic polynomials
spellingShingle Normal high order elements in finite field extensions based on the cyclotomic polynomials
Popovych, R.
Skuratovskii, R.
title_short Normal high order elements in finite field extensions based on the cyclotomic polynomials
title_full Normal high order elements in finite field extensions based on the cyclotomic polynomials
title_fullStr Normal high order elements in finite field extensions based on the cyclotomic polynomials
title_full_unstemmed Normal high order elements in finite field extensions based on the cyclotomic polynomials
title_sort normal high order elements in finite field extensions based on the cyclotomic polynomials
author Popovych, R.
Skuratovskii, R.
author_facet Popovych, R.
Skuratovskii, R.
publishDate 2020
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We consider elements which are both of high multiplicative order and normal in extensions Fqm of the field Fq. If the extension is defined by a cyclotomic polynomial, we construct such elements explicitly and give explicit lower bounds on their orders.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188518
citation_txt Normal high order elements in finite field extensions based on the cyclotomic polynomials / R. Popovych, R. Skuratovskii // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 241–248. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT popovychr normalhighorderelementsinfinitefieldextensionsbasedonthecyclotomicpolynomials
AT skuratovskiir normalhighorderelementsinfinitefieldextensionsbasedonthecyclotomicpolynomials
first_indexed 2025-11-27T19:08:27Z
last_indexed 2025-11-27T19:08:27Z
_version_ 1850852678793428992