On a common generalization of symmetric rings and quasi duo rings
Let J(R) denote the Jacobson radical of a ring R. We call a ring R as J-symmetric if for any a, b, c ∈ R, abc = 0 implies bac ∈ J(R). It turns out that J-symmetric rings are a common generalization of left (right) quasi-duo rings and generalized weakly symmetric rings. Various properties of these ri...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2020 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2020
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/188519 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On a common generalization of symmetric rings and quasi duo rings/ T. Subedi, D. Roy // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 249–258. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188519 |
|---|---|
| record_format |
dspace |
| spelling |
Subedi, T. Roy, D. 2023-03-03T19:53:06Z 2023-03-03T19:53:06Z 2020 On a common generalization of symmetric rings and quasi duo rings/ T. Subedi, D. Roy // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 249–258. — Бібліогр.: 14 назв. — англ. 1726-3255 DOI:10.12958/adm493 2010 MSC: 13C99, 16D80, 16U80 https://nasplib.isofts.kiev.ua/handle/123456789/188519 Let J(R) denote the Jacobson radical of a ring R. We call a ring R as J-symmetric if for any a, b, c ∈ R, abc = 0 implies bac ∈ J(R). It turns out that J-symmetric rings are a common generalization of left (right) quasi-duo rings and generalized weakly symmetric rings. Various properties of these rings are established and some results on exchange rings and the regularity of left SF-rings are generalized. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics On a common generalization of symmetric rings and quasi duo rings Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On a common generalization of symmetric rings and quasi duo rings |
| spellingShingle |
On a common generalization of symmetric rings and quasi duo rings Subedi, T. Roy, D. |
| title_short |
On a common generalization of symmetric rings and quasi duo rings |
| title_full |
On a common generalization of symmetric rings and quasi duo rings |
| title_fullStr |
On a common generalization of symmetric rings and quasi duo rings |
| title_full_unstemmed |
On a common generalization of symmetric rings and quasi duo rings |
| title_sort |
on a common generalization of symmetric rings and quasi duo rings |
| author |
Subedi, T. Roy, D. |
| author_facet |
Subedi, T. Roy, D. |
| publishDate |
2020 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Let J(R) denote the Jacobson radical of a ring R. We call a ring R as J-symmetric if for any a, b, c ∈ R, abc = 0 implies bac ∈ J(R). It turns out that J-symmetric rings are a common generalization of left (right) quasi-duo rings and generalized weakly symmetric rings. Various properties of these rings are established and some results on exchange rings and the regularity of left SF-rings are generalized.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188519 |
| citation_txt |
On a common generalization of symmetric rings and quasi duo rings/ T. Subedi, D. Roy // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 249–258. — Бібліогр.: 14 назв. — англ. |
| work_keys_str_mv |
AT subedit onacommongeneralizationofsymmetricringsandquasiduorings AT royd onacommongeneralizationofsymmetricringsandquasiduorings |
| first_indexed |
2025-11-27T08:52:23Z |
| last_indexed |
2025-11-27T08:52:23Z |
| _version_ |
1850852026358956032 |