On a common generalization of symmetric rings and quasi duo rings

Let J(R) denote the Jacobson radical of a ring R. We call a ring R as J-symmetric if for any a, b, c ∈ R, abc = 0 implies bac ∈ J(R). It turns out that J-symmetric rings are a common generalization of left (right) quasi-duo rings and generalized weakly symmetric rings. Various properties of these ri...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2020
Автори: Subedi, T., Roy, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2020
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/188519
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On a common generalization of symmetric rings and quasi duo rings/ T. Subedi, D. Roy // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 249–258. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188519
record_format dspace
spelling Subedi, T.
Roy, D.
2023-03-03T19:53:06Z
2023-03-03T19:53:06Z
2020
On a common generalization of symmetric rings and quasi duo rings/ T. Subedi, D. Roy // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 249–258. — Бібліогр.: 14 назв. — англ.
1726-3255
DOI:10.12958/adm493
2010 MSC: 13C99, 16D80, 16U80
https://nasplib.isofts.kiev.ua/handle/123456789/188519
Let J(R) denote the Jacobson radical of a ring R. We call a ring R as J-symmetric if for any a, b, c ∈ R, abc = 0 implies bac ∈ J(R). It turns out that J-symmetric rings are a common generalization of left (right) quasi-duo rings and generalized weakly symmetric rings. Various properties of these rings are established and some results on exchange rings and the regularity of left SF-rings are generalized.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On a common generalization of symmetric rings and quasi duo rings
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On a common generalization of symmetric rings and quasi duo rings
spellingShingle On a common generalization of symmetric rings and quasi duo rings
Subedi, T.
Roy, D.
title_short On a common generalization of symmetric rings and quasi duo rings
title_full On a common generalization of symmetric rings and quasi duo rings
title_fullStr On a common generalization of symmetric rings and quasi duo rings
title_full_unstemmed On a common generalization of symmetric rings and quasi duo rings
title_sort on a common generalization of symmetric rings and quasi duo rings
author Subedi, T.
Roy, D.
author_facet Subedi, T.
Roy, D.
publishDate 2020
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let J(R) denote the Jacobson radical of a ring R. We call a ring R as J-symmetric if for any a, b, c ∈ R, abc = 0 implies bac ∈ J(R). It turns out that J-symmetric rings are a common generalization of left (right) quasi-duo rings and generalized weakly symmetric rings. Various properties of these rings are established and some results on exchange rings and the regularity of left SF-rings are generalized.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188519
citation_txt On a common generalization of symmetric rings and quasi duo rings/ T. Subedi, D. Roy // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 249–258. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT subedit onacommongeneralizationofsymmetricringsandquasiduorings
AT royd onacommongeneralizationofsymmetricringsandquasiduorings
first_indexed 2025-11-27T08:52:23Z
last_indexed 2025-11-27T08:52:23Z
_version_ 1850852026358956032