On a common generalization of symmetric rings and quasi duo rings
Let J(R) denote the Jacobson radical of a ring R. We call a ring R as J-symmetric if for any a, b, c ∈ R, abc = 0 implies bac ∈ J(R). It turns out that J-symmetric rings are a common generalization of left (right) quasi-duo rings and generalized weakly symmetric rings. Various properties of these ri...
Gespeichert in:
| Datum: | 2020 |
|---|---|
| Hauptverfasser: | Subedi, T., Roy, D. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2020
|
| Schriftenreihe: | Algebra and Discrete Mathematics |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/188519 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On a common generalization of symmetric rings and quasi duo rings/ T. Subedi, D. Roy // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 249–258. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
On a common generalization of symmetric rings and quasi duo rings
von: Subedi, T., et al.
Veröffentlicht: (2020) -
On a common generalization of symmetric rings and quasi duo rings
von: Subedi, T., et al.
Veröffentlicht: (2020) -
Quasi-duo Partial skew polynomial rings
von: Cortes, W., et al.
Veröffentlicht: (2011) -
Quasi-duo Partial skew polynomial rings
von: Cortes, Wagner, et al.
Veröffentlicht: (2018) -
Quasi-Euclidean duo rings with elementary reduction of matrices
von: Romaniv, O., et al.
Veröffentlicht: (2015)