On the lattice of weak topologies on the bicyclic monoid with adjoined zero

A Hausdorff topology τ on the bicyclic monoid with adjoined zero C⁰ is called weak if it is contained in the coarsest inverse semigroup topology on C⁰. We show that the lattice W of all weak shift-continuous topologies on C⁰ is isomorphic to the lattice SIF¹×SIF¹ where SIF¹ is the set of all shift-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2020
Hauptverfasser: Bardyla, S., Gutik, O.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2020
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188551
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the lattice of weak topologies on the bicyclic monoid with adjoined zero / S. Bardyla, O. Gutik // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 26–43. — Бібліогр.: 30 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188551
record_format dspace
spelling Bardyla, S.
Gutik, O.
2023-03-05T17:20:25Z
2023-03-05T17:20:25Z
2020
On the lattice of weak topologies on the bicyclic monoid with adjoined zero / S. Bardyla, O. Gutik // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 26–43. — Бібліогр.: 30 назв. — англ.
1726-3255
DOI:10.12958/adm1459
2010 MSC: 22A15, 06B23
https://nasplib.isofts.kiev.ua/handle/123456789/188551
A Hausdorff topology τ on the bicyclic monoid with adjoined zero C⁰ is called weak if it is contained in the coarsest inverse semigroup topology on C⁰. We show that the lattice W of all weak shift-continuous topologies on C⁰ is isomorphic to the lattice SIF¹×SIF¹ where SIF¹ is the set of all shift-invariant filters on ! with an attached element 1 endowed with the following partial order: F ≤ G if and only if G = 1 or F ⊂ G. Also, we investigate cardinal characteristics of the lattice W. In particular, we prove that W contains an antichain of cardinality 2ᶜ and a well-ordered chain of cardinality c. Moreover, there exists a well-ordered chain of first-countable weak topologies of order type t.
The work of the author is supported by the Austrian Science Fund FWF (grant I3709 N35).
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On the lattice of weak topologies on the bicyclic monoid with adjoined zero
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the lattice of weak topologies on the bicyclic monoid with adjoined zero
spellingShingle On the lattice of weak topologies on the bicyclic monoid with adjoined zero
Bardyla, S.
Gutik, O.
title_short On the lattice of weak topologies on the bicyclic monoid with adjoined zero
title_full On the lattice of weak topologies on the bicyclic monoid with adjoined zero
title_fullStr On the lattice of weak topologies on the bicyclic monoid with adjoined zero
title_full_unstemmed On the lattice of weak topologies on the bicyclic monoid with adjoined zero
title_sort on the lattice of weak topologies on the bicyclic monoid with adjoined zero
author Bardyla, S.
Gutik, O.
author_facet Bardyla, S.
Gutik, O.
publishDate 2020
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description A Hausdorff topology τ on the bicyclic monoid with adjoined zero C⁰ is called weak if it is contained in the coarsest inverse semigroup topology on C⁰. We show that the lattice W of all weak shift-continuous topologies on C⁰ is isomorphic to the lattice SIF¹×SIF¹ where SIF¹ is the set of all shift-invariant filters on ! with an attached element 1 endowed with the following partial order: F ≤ G if and only if G = 1 or F ⊂ G. Also, we investigate cardinal characteristics of the lattice W. In particular, we prove that W contains an antichain of cardinality 2ᶜ and a well-ordered chain of cardinality c. Moreover, there exists a well-ordered chain of first-countable weak topologies of order type t.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188551
citation_txt On the lattice of weak topologies on the bicyclic monoid with adjoined zero / S. Bardyla, O. Gutik // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 26–43. — Бібліогр.: 30 назв. — англ.
work_keys_str_mv AT bardylas onthelatticeofweaktopologiesonthebicyclicmonoidwithadjoinedzero
AT gutiko onthelatticeofweaktopologiesonthebicyclicmonoidwithadjoinedzero
first_indexed 2025-12-07T20:01:12Z
last_indexed 2025-12-07T20:01:12Z
_version_ 1850880999666221056