Gentle m-Calabi-Yau tilted algebras

We prove that all gentle 2-Calabi–Yau tilted algebras are Jacobian, moreover their bound quiver can be obtained via block decomposition. For two related families, the m-cluster-tilted algebras of type A and à , we prove that a module M is stable Cohen-Macaulay if and only if Ωᵐ⁺¹τM ≃ M....

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2020
Main Author: Garcia Elsener, A.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2020
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/188552
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Gentle m-Calabi-Yau tilted algebras / A. Garcia Elsener // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 44–62. — Бібліогр.: 28 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188552
record_format dspace
spelling Garcia Elsener, A.
2023-03-05T17:22:34Z
2023-03-05T17:22:34Z
2020
Gentle m-Calabi-Yau tilted algebras / A. Garcia Elsener // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 44–62. — Бібліогр.: 28 назв. — англ.
1726-3255
DOI:10.12958/adm1423
https://nasplib.isofts.kiev.ua/handle/123456789/188552
We prove that all gentle 2-Calabi–Yau tilted algebras are Jacobian, moreover their bound quiver can be obtained via block decomposition. For two related families, the m-cluster-tilted algebras of type A and à , we prove that a module M is stable Cohen-Macaulay if and only if Ωᵐ⁺¹τM ≃ M.
Supported by CONICET and PICT 2013-0799 ANPCyT (Argentina) and P 30549 FWF 2017-2020 (Austria).
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Gentle m-Calabi-Yau tilted algebras
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Gentle m-Calabi-Yau tilted algebras
spellingShingle Gentle m-Calabi-Yau tilted algebras
Garcia Elsener, A.
title_short Gentle m-Calabi-Yau tilted algebras
title_full Gentle m-Calabi-Yau tilted algebras
title_fullStr Gentle m-Calabi-Yau tilted algebras
title_full_unstemmed Gentle m-Calabi-Yau tilted algebras
title_sort gentle m-calabi-yau tilted algebras
author Garcia Elsener, A.
author_facet Garcia Elsener, A.
publishDate 2020
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We prove that all gentle 2-Calabi–Yau tilted algebras are Jacobian, moreover their bound quiver can be obtained via block decomposition. For two related families, the m-cluster-tilted algebras of type A and à , we prove that a module M is stable Cohen-Macaulay if and only if Ωᵐ⁺¹τM ≃ M.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188552
citation_txt Gentle m-Calabi-Yau tilted algebras / A. Garcia Elsener // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 44–62. — Бібліогр.: 28 назв. — англ.
work_keys_str_mv AT garciaelsenera gentlemcalabiyautiltedalgebras
first_indexed 2025-12-07T20:48:25Z
last_indexed 2025-12-07T20:48:25Z
_version_ 1850883970748645376