Witt equivalence of function fields of conics

Two fields are Witt equivalent if, roughly speaking, they have the same quadratic form theory. Formally, that is to say that their Witt rings of symmetric bilinear forms are isomorphic. This equivalence is well understood only in a few rather specific classes of fields. Two such classes, namely func...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2020
Автори: Gladki, P., Marshall, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2020
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/188553
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Witt equivalence of function fields of conics / P. Gladki, M. Marshall // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 63–78. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188553
record_format dspace
spelling Gladki, P.
Marshall, M.
2023-03-05T17:25:07Z
2023-03-05T17:25:07Z
2020
Witt equivalence of function fields of conics / P. Gladki, M. Marshall // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 63–78. — Бібліогр.: 20 назв. — англ.
1726-3255
DOI:10.12958/adm1271
2000 MSC: Primary 11E81, 12J20; Secondary 11E04, 11E12
https://nasplib.isofts.kiev.ua/handle/123456789/188553
Two fields are Witt equivalent if, roughly speaking, they have the same quadratic form theory. Formally, that is to say that their Witt rings of symmetric bilinear forms are isomorphic. This equivalence is well understood only in a few rather specific classes of fields. Two such classes, namely function fields over global fields and function fields of curves over local fields, were investigated by the authors in their earlier works [5] and [6]. In the present work, which can be viewed as a sequel to the earlier papers, we discuss the previously obtained results in the specific case of function fields of conic sections, and apply them to provide a few theorems of a somewhat quantitive flavour shedding some light on the question of numbers of Witt non-equivalent classes of such fields.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Witt equivalence of function fields of conics
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Witt equivalence of function fields of conics
spellingShingle Witt equivalence of function fields of conics
Gladki, P.
Marshall, M.
title_short Witt equivalence of function fields of conics
title_full Witt equivalence of function fields of conics
title_fullStr Witt equivalence of function fields of conics
title_full_unstemmed Witt equivalence of function fields of conics
title_sort witt equivalence of function fields of conics
author Gladki, P.
Marshall, M.
author_facet Gladki, P.
Marshall, M.
publishDate 2020
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Two fields are Witt equivalent if, roughly speaking, they have the same quadratic form theory. Formally, that is to say that their Witt rings of symmetric bilinear forms are isomorphic. This equivalence is well understood only in a few rather specific classes of fields. Two such classes, namely function fields over global fields and function fields of curves over local fields, were investigated by the authors in their earlier works [5] and [6]. In the present work, which can be viewed as a sequel to the earlier papers, we discuss the previously obtained results in the specific case of function fields of conic sections, and apply them to provide a few theorems of a somewhat quantitive flavour shedding some light on the question of numbers of Witt non-equivalent classes of such fields.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188553
citation_txt Witt equivalence of function fields of conics / P. Gladki, M. Marshall // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 63–78. — Бібліогр.: 20 назв. — англ.
work_keys_str_mv AT gladkip wittequivalenceoffunctionfieldsofconics
AT marshallm wittequivalenceoffunctionfieldsofconics
first_indexed 2025-12-07T15:15:19Z
last_indexed 2025-12-07T15:15:19Z
_version_ 1850863013406441472