An elementary description of K₁(R) without elementary matrices

Let R be a ring with unit. Passing to the colimit with respect to the standard inclusions GL(n,R) → GL(n+1,R) (which add a unit vector as new last row and column) yields, by definition, the stable linear group GL(R); the same result is obtained, up to isomorphism, when using the “opposite” inclusio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2020
Hauptverfasser: Hüttemann, T., Zhang, Z.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2020
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188554
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:An elementary description of K₁(R) without elementary matrices / T. Hüttemann, Z. Zhang // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 79–82. — Бібліогр.: 1 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Let R be a ring with unit. Passing to the colimit with respect to the standard inclusions GL(n,R) → GL(n+1,R) (which add a unit vector as new last row and column) yields, by definition, the stable linear group GL(R); the same result is obtained, up to isomorphism, when using the “opposite” inclusions (which add a unit vector as new first row and column). In this note it is shown that passing to the colimit along both these families of inclusions simultaneously recovers the algebraic K-group K₁(R) = GL(R)/E(R) of R, giving an elementary description that does not involve elementary matrices explicitly.
ISSN:1726-3255