An elementary description of K₁(R) without elementary matrices

Let R be a ring with unit. Passing to the colimit with respect to the standard inclusions GL(n,R) → GL(n+1,R) (which add a unit vector as new last row and column) yields, by definition, the stable linear group GL(R); the same result is obtained, up to isomorphism, when using the “opposite” inclusio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2020
Hauptverfasser: Hüttemann, T., Zhang, Z.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2020
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188554
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:An elementary description of K₁(R) without elementary matrices / T. Hüttemann, Z. Zhang // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 79–82. — Бібліогр.: 1 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188554
record_format dspace
spelling Hüttemann, T.
Zhang, Z.
2023-03-05T17:27:51Z
2023-03-05T17:27:51Z
2020
An elementary description of K₁(R) without elementary matrices / T. Hüttemann, Z. Zhang // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 79–82. — Бібліогр.: 1 назв. — англ.
1726-3255
DOI:10.12958/adm1568
2010 MSC: Primary 19B99; Secondary 16E20
https://nasplib.isofts.kiev.ua/handle/123456789/188554
Let R be a ring with unit. Passing to the colimit with respect to the standard inclusions GL(n,R) → GL(n+1,R) (which add a unit vector as new last row and column) yields, by definition, the stable linear group GL(R); the same result is obtained, up to isomorphism, when using the “opposite” inclusions (which add a unit vector as new first row and column). In this note it is shown that passing to the colimit along both these families of inclusions simultaneously recovers the algebraic K-group K₁(R) = GL(R)/E(R) of R, giving an elementary description that does not involve elementary matrices explicitly.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
An elementary description of K₁(R) without elementary matrices
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title An elementary description of K₁(R) without elementary matrices
spellingShingle An elementary description of K₁(R) without elementary matrices
Hüttemann, T.
Zhang, Z.
title_short An elementary description of K₁(R) without elementary matrices
title_full An elementary description of K₁(R) without elementary matrices
title_fullStr An elementary description of K₁(R) without elementary matrices
title_full_unstemmed An elementary description of K₁(R) without elementary matrices
title_sort elementary description of k₁(r) without elementary matrices
author Hüttemann, T.
Zhang, Z.
author_facet Hüttemann, T.
Zhang, Z.
publishDate 2020
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let R be a ring with unit. Passing to the colimit with respect to the standard inclusions GL(n,R) → GL(n+1,R) (which add a unit vector as new last row and column) yields, by definition, the stable linear group GL(R); the same result is obtained, up to isomorphism, when using the “opposite” inclusions (which add a unit vector as new first row and column). In this note it is shown that passing to the colimit along both these families of inclusions simultaneously recovers the algebraic K-group K₁(R) = GL(R)/E(R) of R, giving an elementary description that does not involve elementary matrices explicitly.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188554
citation_txt An elementary description of K₁(R) without elementary matrices / T. Hüttemann, Z. Zhang // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 79–82. — Бібліогр.: 1 назв. — англ.
work_keys_str_mv AT huttemannt anelementarydescriptionofk1rwithoutelementarymatrices
AT zhangz anelementarydescriptionofk1rwithoutelementarymatrices
AT huttemannt elementarydescriptionofk1rwithoutelementarymatrices
AT zhangz elementarydescriptionofk1rwithoutelementarymatrices
first_indexed 2025-12-07T21:12:32Z
last_indexed 2025-12-07T21:12:32Z
_version_ 1850885487876636672